ExpressPlusTM PAGE Gels

Technical Manual No. TM0645

Version: 08262013

For research use only. Not for use in diagnostic procedures.

Table of Contents

I	Introduction	2
II	Gel Selection Guide	3
III	Compatible Gel Tanks	5
IV	Introductions for Use of ExpressPlus [™] PAGE Gel	5
V	Staining and Drying Gels	11
VI	Protein Transfer	12
VII	Performance of ExpressPlus [™] PAGE Gels	12
VIII	Troubleshooting	13
IX	Related Products and Order Information	15

I. Introduction

GenScript ExpressPlus[™] PAGE Gels are high-performance precast mini polyacrylamide gels specially designed for large loading volumes. The unique design of the cassette gives better band resolution and significantly improves the sample distribution in the loading wells which increases the evenness of the band. ExpressPlus[™] PAGE Gels are casted in a neutral pH buffer that minimizes the hydrolysis of polyacrylamide and results in extra gel stability.

Manufactured without SDS, ExpressPlus[™] PAGE Gels are ideal for SDS-PAGE and native electrophoresis depending on the running buffer and transfer buffer used. The proprietary gel-casting techniques provide excellent batch-to-batch consistency and guarantee a reliable migration pattern. Using specially formulated Tris-MOPS running buffer, ExpressPlus[™] PAGE Gels enable proteins to be separated quickly and easily for subsequent detection by staining or western blotting.

The ExpressPlus[™] PAGE Gels are available in gradient (4-20%, 4-12%, and 8-16%) and fixed (8%, 10%, and 12%) concentrations and in 10-well, 12-well, and 15-well formats.

Key Features:

- **Large loading volume** Up to 80 μl, more than other vendors
- Easy to use Wider opening allows sample loading with regular pipette tips
- High resolution More even, sharper bands
- > Long shelf life Up to 12 months; 3 months at room temperature
- Compatible cassette design Fits most popular mini-gel tanks
- > High reproducibility Guaranteed consistent performance of each gel
- Cost effective Significant reduction in the cost of each experiment

Gel Selection Guide П.

Cat Na		Malla		Running	Transfer	Separation
Cat. No.	% Acrylamide	Wells	Well Vol.	Buffer	Buffer	Range
M00810	8%	10	80 µl	Tris-MOPS-SDS, MES	Tris-Bicine	180—20 kDa
M01010	10%	10	80 µl	Tris-MOPS-SDS, MES	Tris-Bicine	160—10 kDa
M01210	12%	10	80 µl	Tris-MOPS-SDS, MES	Tris-Bicine	120—6.5 kDa
M42010	4-20%	10	80 µl	Tris-MOPS-SDS, MES	Tris-Bicine	250—10 kDa
M81610	8-16%	10	80 µl	Tris-MOPS-SDS, MES	Tris-Bicine	160—10 kDa
M41210	4-12%	10	80 µl	Tris-MOPS-SDS, MES	Tris-Bicine	250—20 kDa
M00812	8%	12	60 µl	Tris-MOPS-SDS, MES	Tris-Bicine	180—20 kDa
M01012	10%	12	60 µl	Tris-MOPS-SDS, MES	Tris-Bicine	160—10 kDa
M01212	12%	12	60 µl	Tris-MOPS-SDS, MES	Tris-Bicine	120—6.5 kDa
M42012	4-20%	12	60 µl	Tris-MOPS-SDS, MES	Tris-Bicine	250—10 kDa
M81612	8-16%	12	60 µl	Tris-MOPS-SDS, MES	Tris-Bicine	160—10 kDa
M41212	4-12%	12	60 µl	Tris-MOPS-SDS, MES	Tris-Bicine	250—20 kDa
M00815	8%	15	40 µl	Tris-MOPS-SDS, MES	Tris-Bicine	180—20 kDa
M01115	10%	15	40 µl	Tris-MOPS-SDS, MES	Tris-Bicine	160—10 kDa
M01215	12%	15	40 µl	Tris-MOPS-SDS, MES	Tris-Bicine	120—6.5 kDa
M42015	4-20%	15	40 µl	Tris-MOPS-SDS, MES	Tris-Bicine	250—10 kDa
M81615	8-16%	15	40 µl	Tris-MOPS-SDS, MES	Tris-Bicine	160—10 kDa
M41215	4-12%	15	40 μl	Tris-MOPS-SDS, MES	Tris-Bicine	250—20 kDa

Table 1. Gel Selection Guide

- 860 Centennial Ave., Piscataway, NJ 08854, USA -

The protein migration table below can help you choose the appropriate gel for your protein electrophoresis analysis.

8-16%	4-20%	4-12%	8%	10%	12%
250kDa			250kDa	250kDa	250kDa 150kDa
150kDa	250kDa	250kDa	150kDa	150kDa	100kDa 80kDa
100kDa	150kDa		Toonbu	100kDa	60kDa
80kDa	100kDa	150kDa	100kDa	80kDa	50kDa
60kDa	80kDa	100kDa	80kDa	60kDa	40kDa
50kDa	60kDa			50kDa	30kDa
40kDa		80kDa	60kDa		
	50kDa	60kDa	50kDa	40kDa	25kDa
30kDa	40kDa	CONDU	CONDA	30kDa	
	30kDa	50kDa	40kDa		20kDa
25kDa		40kDa		25kDa	15kDa
20kDa	25kDa		30kDa		
15kDa	20kDa	30kDa	_	20kDa	10kDa
10kDa	15kDa	25kDa	051.0	15kDa	
TORDA	10kDa		25kDa	401-0	
		20kDa	20kDa	10kDa	

 Table 2. Protein Migration Table

III. Compatible Gel Tanks

ExpressPlus[™] PAGE Gels are compatible with the following Gel Tanks:

Bio-Rad Mini-PROTEAN[®] II & 3

Bio-Rad Mini-PROTEAN[®] Tetra System

LONZA PAGEr[®] Minigel Chamber

Hoefer Mighty Small (SE 260/SE 250)

Hoefer Tall Mighty Small (SE 280)

Invitrogen Novex XCell I, II, & Surelock[®] (Use with GenScript Gel Tank Adapter Plates)

IV. Instructions for Use of ExpressPlus[™] PAGE Gels

A. Prepare Gel Buffer and Gel Tank

- 1. Dissolve one pack of MOPS running buffer powder (Cat No. M00138) in 1 L deionized water to make 1 L 1x running buffer.
- 2. Remove ExpressPlus[™] PAGE Gel from the pouch, peel the sealing tape at the bottom of the gel cassette (see Figure 1).

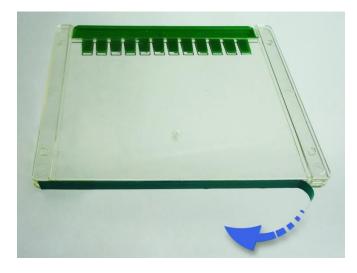


Figure 1. Peel the tape from the bottom of the cassette

3. Remove the comb from the gel cassette gently (see Figure 2).

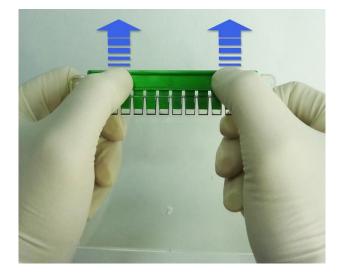
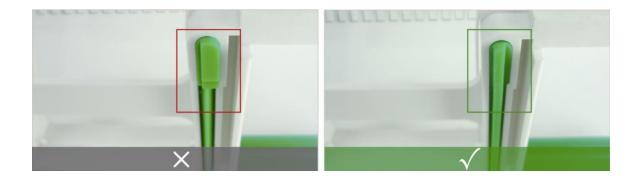



Figure 2. Remove the comb from the gel cassette

4. Insert the gel into the gel running apparatus.

Refer to the apparatus manufacturer's instructions.

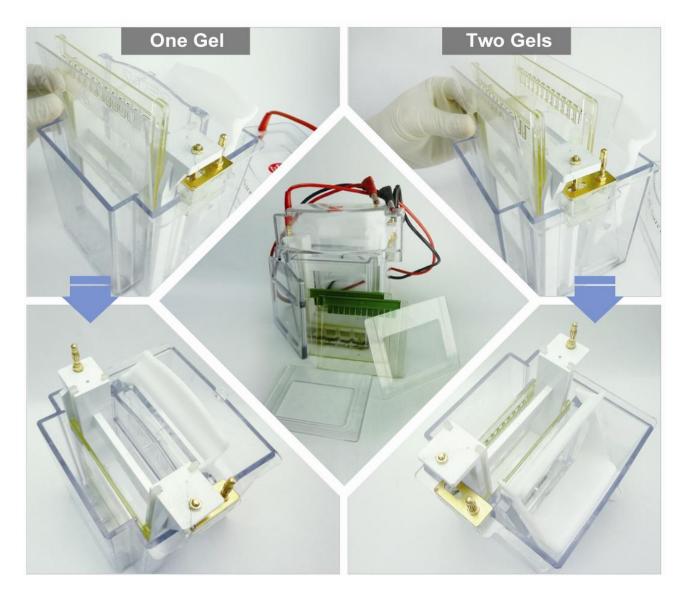

Notes for Using Bio-Rad Mini-PROTEAN® Tetra System: remove the gasket from the inner frame, turn it around so the flat side is facing outwards and insert the gasket back into the inner frame (see Figure 3).

Figure 3. Use of ExpressPlus[™] PAGE Gels in Bio-Rad Mini-PROTEAN[®] Tetra System

Notes for using Invitrogen Novex Mini-Cell tanks: Adapters provided in the package are needed since the ExpressPlus[™] PAGE Gel cassette is thinner than the Invitrogen NuPAGE[®] gel cassette. See figure 4 for use of ExpressPlus[™] PAGE Gels in the Invitrogen Novex[®] Mini-Cell.

Figure 4. Use of ExpressPlus[™] PAGE Gels in Invitrogen Novex[®] Mini-Cell

- 5. Pour sufficient 1x MOPS or MES running buffer into the inner tank of the gel running apparatus to cover the sample wells by 5-7 mm. Fill the outer tank with 1x MOPS or MES running buffer to ensure proper cooling. For best results, the buffer in the outer tank should be above the top level of the sample wells.
- 6. Rinse the sample wells thoroughly with 1x running buffer to remove air bubbles and displace any storage buffer.

B. Sample Preparation

1. For SDS PAGE

SDS Sample preparation

5x sample buffer:	
SDS	1.0 g
Glycerol	5.0 ml
Bromophenol Blue	25 mg
Tris base	150 mg
2-Mercaptoethanol	1.0 ml
Deionized water	to 10 ml
(use 8 M NaOH or 8 M HCl adjust the pH to 6.8)	

10x MOPS running buffer:

60.6 g
104.6 g
10.0 g
3.0 g
to 1000 ml

1x protein sample buffer:

x μl	I
x) 2 μ	.I
to 1	10 µl
	<) 2 μ

Heat samples at **70°C** for 10 minutes before loading.

2. For Native PAGE

The ExpressPlus[™] PAGE Gels are precast without SDS which is conducive for native PAGE. Protein samples should be prepared in non-reducing, non-denaturing sample buffer, to maintain the proteins' secondary structure and native charge. The mobility of the protein depends on the size and shape of the protein as well as its net charge.

8

Sample preparation

5x sample buffer:

5.0 ml
25 mg
150 mg
1.0 ml (if necessary)
to 10 ml

Toll-free Tel: 1-877-436-7274

10x MOPS Running Buffer:

Tris base	60.6 g
MOPS	104.6 g
EDTA	3.0 g
Deionized water	to 1000 ml

Note: GenScript's Tris-MOPS-SDS running buffer powder (Cat No. M00138) contains SDS and is **NOT** suitable for native PAGE.

1x protein sample buffer:	
Sample	x μl
Sample buffer (5x)	2 µl
Deionized water	to 10 μl

Do NOT heat the sample.

3. Running the sample

Protein sample loading.

Make sure the loading tip is vertically inserted into the sample well for optimal results.

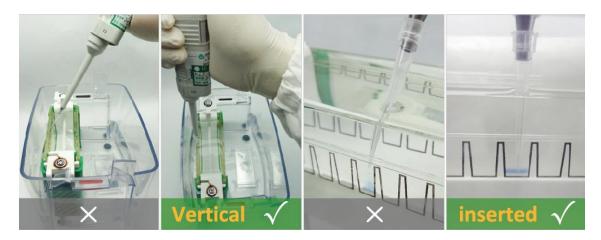


Figure 5. Use of sample loading

Note: Optimal sample size must be established by trial and error. Protein overloading will cause smearing and distortion. Excessive loading of proteins with free carbohydrates may also lead to band distortion or failure of the protein to penetrate the gel (See Troubleshooting).

Place the rig cover on the gel rig and plug the leads into the power supply (red to red and black to black). Run the gel at 140 volts for 45-55 minutes until color strip reaches the bottom of the gel, depending on the sizes of the proteins of interest (Table 3).

Table 3. Electrophoresis conditions for ONE ExpressPlus[™] PAGE Gel

<u>Voltage</u>	<u>Start</u>	<u>Finish</u>	Run Time per Gel*	
140 V	75-100 mA	30-50 mA	45-55 minutes	
*Gel running time depends on the temperature in the laboratory. These run times are recommended at a laboratory				

temperature of 20°C with MOPS buffer.

Important notes:

- ◇ Make sure to use the compatible gel tank. Leaking between inner and outer tank will cause slow migration rate. (see Troubleshooting)
- \diamond The running time may be varied depending on your power supply and the gel concentration.
- 4. Removing a gel from the Cassette (see Figure 6)
- 1) Once the run is finished, remove the gel from the gel tank according to the manufacturer's instructions.
- 2) Open the gel cassette by carefully inserting the cassette opener into the gap between the two plates.
- 3) Wiggle the cassette opener up and down gently to separate the two plates. Repeat the operation along both sides of the cassette, until the two plates are completely separated. A cracking sound may be heard as you open the cassette.
- 4) Upon opening, gel may sit on either side of the cassette. Remove and discard the plate without the gel, and allow the gel to stay on the other plate. Loosen the gel from the plate with water and gently remove.

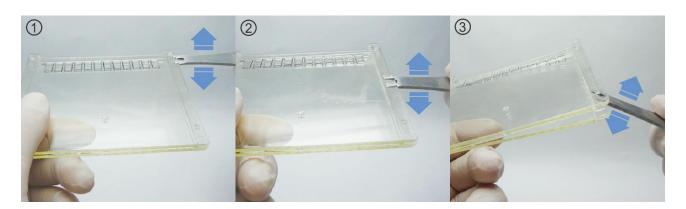


Figure 6. Open the gel cassette to remove the gel.

C. Storage

Store ExpressPlus[™] PAGE gels at 4-25°C. Gels are stable for up to 12 months if stored at 2-8°C.

V. Staining and Drying Gels

All standard SDS staining procedures can be used with ExpressPlus[™]PAGE gels. When using commercially available staining reagents and device, follow the manufacturer's instructions.

Coomassie Staining - for homemade Comassie R-250 staining:

- 1) Make the staining solution: Dissolve 0.1% Coomassie R-250 in a 40% ethanol, 10% acetic acid solution.
- 2) Make the destaining solution: Use 10% ethanol, 7.5% acetic acid solution.

3) Open the gel cassette and take the gel out gently after electrophoresis, then put the gel in a staining container of 100ml stainning solution.

4) Cover the staining container and heat in a microwave oven at full power for 8 minutes. To prevent hazardous, flammable vapors from forming, do **NOT** allow the solution to boil.

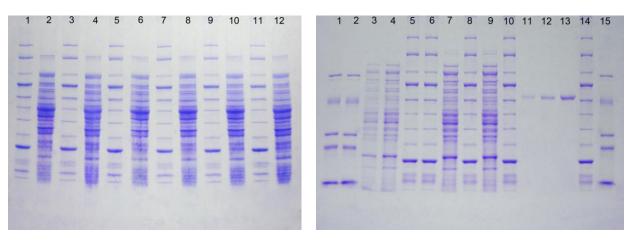
5) Remove the staining container from the microwave oven and gently shake the gel for 5 minutes at room temperature on an orbital shaker.

- 6) Drain the staining solution and rinse the gel with deionized water.
- 7) Place the stained gel in a staining container of 100 ml destaining solution.
- 8) Cover the staining container and heat in a microwave oven at full power for 8 minutes.
- 9) Drain the destaining solution, add fresh destaining solution, repeat step 8.

10) Gently shake the gel at room temperature on an orbital shaker until the desired background is achieved.

eStain® Staining (Cat No. L02010)

ExpressPlus[™] gels can be stained using GenScript's eStain[®] 2.0 Protein Staining System which allows quick staining of gels in only 7 minutes. See the eStain[®] 2.0 System manual for staining procedures.


Gel drying

ExpressPlus[™] PAGE Gels can be dried by passive evaporation (air-drying), vacuum drying or other gel drying methods.

VI. Protein Transfer

All standard transferring procedures can be used with ExpressPlus[™] PAGE Gels. Using 1x transfer buffer, transfer the proteins at 40 volts for 90 minutes using the wet blotting method or transfer the blot at 25 volts for 30 minutes using the semi-dry blotting method. Optimal transfer time must be established by trial and error depending on the sizes of the proteins of interest.

VII. Performance of ExpressPlus[™] PAGE Gels

Proteins were separated on a 12-well, 4-20% ExpressPlus[™] PAGE Gel **(L)** and a 15-well, 4-20% ExpressPlus[™] PAGE Gel **(R)** and then stained using the eStain[®] Protein Staining System (R-250). **(L):** Lane 1, 3, 5, 7, 9, 11: 8 µl New England Biolabs[®] 10-250 kDa protein ladder (P7703S); Lane 2, 4, 6, 8, 10, 12: 7 µl *E.coli* cell lysate.

(**R**): Lane 1, 2, 15: GenScript Broad Protein Marker II (M00505); Lane 3, 4, 7, 9: 5 μl *E.coli* cell lysate; Lane 5, 6, 8, 10, 14: 6 μl New England Biolabs[®] 10-250 kDa protein ladder (P7703S); Lane 11, 12, 13: 150 ng/ 300 ng/ 600 ng BSA.

VIII. Troubleshooting

Problems	Probable cause	Solution
Distorted protein bands	Air bubbles in the sample wells, or between gel and cassette	Use a syringe or other appropriate tools to flush the sample wells thoroughly with running buffer
Indicator strip partly	Buffer goes into gel through broken cassette	Use compatible gel tanks, make sure the cassette is not cracked
change to yellow	pH value decreased	Make new running buffer by deionized water
Streaking	Poorly soluble or weakly charged particles (such as carbohydrates) in sample	Heat sample in the presence of SDS, centrifuge sample and load the supernatant
Electrophoresis time is too long	Seal is not removed	Peel the seal at bottom of cassette before loading
Electrophoresis time is too long	Incorrect running condition	Use fixed voltage and automated current, eg. 140V through the electrophoresis
	Incorrect gel percentage	Use the protein migration table to choose the appropriate gels
Bands are difficult to distinguish	Sample overloading	Reduce sample amount, do not load more than 50 µg (total protein) in a single well
	Insufficient buffer to keep tank cool	For best results, the buffer in the outer tank should be approximately level with the bottom of the sample wells
Sample spreading across the gel	Sample contains too much salt	Reduce salt by dialysis or ultra-filtration

Auchieurous heurol et the		Use MES running buffer
Ambiguous band at the same position of indicator strip	Ion disturbance in gel (higher chance when analyzing small proteins)	Run the gel with longer running time or neglect the band
The voltage cannot reach	Leaking between the inner and outer tank during run	Use compatible gel tank
setting value	Excess salt in the sample	Reduce salt by dialysis or ultra-filtration
Lots of air bubbles		Run the gel at 4°C
between the gel and the cassette	Running buffer is hot after electrophoresis	Increase the running buffer amount in outer tank

Fax: 1-732-210-0262

IX. Related Products and Ordering Information

Product	Cat. No.
5x sample buffer	MB01015
MOPS running buffer powder	M00138
Transfer buffer powder	M00139
Smart Advanced Broad-Range Protein Standard	M00441
Smart Dual Color Pre-Stained Protein Standard	M00442
Smart Multi Color Pre-Stained Protein Standard	M00443
Protein Marker for Fluorescent Western Blotting	M00124
High Range EasyWestern Protein Standard	M00276
eStain [®] 2.0 Protein Staining Device	L02010
eStain [®] Protein Staining Pads (R-250, 20-pak)	L02011
eStain [®] Protein Staining Pads (G-250, 20-pak)	L02012
eStain [®] Graphite Electrode (11mm, 1-pak)	L02014
eBlot [®] Protein Transfer Device	L03031
eBlot [®] Protein Transfer Pads (Basic, 20-pak)	L03011
eBlot [®] Protein Transfer Pads	L03013
(Nitrocellulose, 20-pak)	
eBlot [®] Protein Transfer Pads (PVDF, 20-pak)	L03014
eBlot [®] Graphite Electrode	L03012
eBlot [®] Equilibration Buffer	M01078

GenScript USA Inc,

860 Centennial Ave. Piscataway, NJ 08854 Toll-Free: 1-877-436-7274 Tel: 1-732-885-9188, Fax: 1-732-210-0262 Email: product@genscript.com Web: http://www.genscript.com

- 860 Centennial Ave., Piscataway, NJ 08854, USA -Fax: 1-732-210-0262 Email: product@genscript.com

15