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The Salis Lab 

Biophysical Modeling to Predict Expression from DNA Sequence 

SYNTHETIC 

Design Specifications in Genetic Pseudocode 
 
If substrate > critical: 
   if pH > 4 AND O2 > 1%: 
         call produceFuel(E1 = 100,  
              E2 = 1000, E3 = 50, E4 = 10000) 
 
         call shiftMetabolism(glycolysis = 1000,  
 TCA cycle = 100, biomass = 0) 

Optimization of Synthetic DNA to Achieve a Targeted Function 

O2 pH substrate 

autonomous control 

genes, operons, & pathways 

Quantitative predictions 
transcription, translation rates  
mRNA stability, coupling 
 
System-level dynamics 
control & optimality 

Building Genetic Systems to Solve Problems: 
 

 Biodetoxification Pathway for Lignocellulose 
  

 Versatile RNA-based Sensors for Diagnostics and Detection 
 

 Re-engineering Central Metabolism to Over-produce Products 

Building Genetic Systems to Challenge our Knowledge: 
 

 Biophysics of Gene Expression 

 Dynamics of Enzymatic Multi-Protein Systems 

 Genome-Scale Predictions vs. Phenotype 



Translation Initiation Translational Coupling 

Transcriptional Regulation Multi-Enzyme Pathways 

Upstream Gene Expression 
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Riboswitch Regulation 

Predicted Transcription Rates 
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Ribosome’s Binding DG Predicted Activation 
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Biophysical Models of Gene Expression and Regulation 
Sequence to Function 



De Novo DNA LLC 
Founded by Howard Salis to distribute our automated design methods 

for engineering large genetic systems 

v1.0 

Over 70,000 DNA sequences 
have been designed since 2010 

http://www.denovodna.com/software 

v2.0 

Freely available 
for non-commercial applications 

http://www.denovodna.com/software


Clone Less,  Know More 

Engineering Genetic Systems 
to Manufacture Products 

Recombinant Enzymes 

Natural Products 

Recombinant Biologics 

Objective:    Predict the specific DNA sequences that will maximize a product’s titer 
             
    Do it reliably,    for diverse recombinant products. 
    And efficiently,   with less cloning and fewer experiments. 
     

We should also learn something new so the next product is developed even faster 



Applications of our Models & Algorithms 

Riboflavin biosynthesis (Lin et. al., 2014) 

Terpenoid biosynthesis (Zhou et. al., 2014) 

Amorphadiene biosynthesis 
        (Nowroozi et. al., 2014) 

Nitrogen fixation (Temme at. al., 2012) 

Engineering memory genetic devices 
    (Yang et. al., 2014) 

Isoprene biosynthesis (Zurbriggen et. al. 2012) 

Fatty acid biosynthesis (Lennen et. al., 2013) 

Butanol biosynthesis (Lim et. al., 2013) 

2,3-butanediol biosynthesis (Oliver et. al., 2014) 

Pathway Optimization & Circuit Engineering 

Third–party validation (Biggs et. al., 2014) 

v1.0 

v2.0 

Recombinant Protein Expression 
Antibody expression (Makino et. al., 2011) 
P450 cytochrome expression (Chang et al., 2014) 
Salmonella protein expression (Medina et. al., 2011) 

Xylanase and glucanase expression (Liu et. al., 2012) 
Nitrile hydratase expression (Kang et. al., 2014) 
Secreted protein expression (Heggeset et. al. 2013) 



Today’s Topics 

#1:  Designing DNA to Control Protein Expression 
#2:  Optimization of Multi-Protein Genetic Systems 
#3:  Case Studies: Engineered Metabolic Pathways 

A Multi-Protein Genetic System 

multiple proteins working together 
to produce a product 

A Single-Protein Genetic System 

expression & purification 
of a single protein 

More recombinant products are requiring the expression of multiple proteins simultaneously 
Our methods allow you to efficiently engineer & optimize multi-protein genetic systems 

Examples: single-chain antibodies, 
single-subunit enzymes 

Examples: recombinant vaccines, multi-subunit enzymes, 
natural product biosynthesis (antibiotics, therapeutics) 



DNA 

Transcription Translation Protein Folding 

Membrane Insertion 

Secretion 
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The Production Rate of Proteins must be balanced with other cellular processes 
 

cell growth, secretion, membrane insertion, 
glycosylation, protease cleavage, enzyme activity 

RATE OF RATE OF 

RATE OF 

RATE OF 

Protein Expression in a Nutshell 

Protein Production 



Designing DNA to Control Protein Expression 

Target Protein Expression Levels An Engineered DNA sequence 

Promoters 
(controls transcription initiation) 

Ribosome Binding Sites 
(controls translation initiation) 

Protein Coding Sequences 
(controls translation elongation rate) 

Transcriptional Terminators 
(controls termination efficiency) 

Low-cost DNA Synthesis allows you to custom-design 
every genetic part to control transcription rate & translation rate 

and to rapidly optimize the expression of all proteins in your system 



Designing DNA to Control Protein Expression 

Target Protein Expression Levels An Engineered DNA sequence 

use Promoters for dynamic/inducible control 
use Ribosome Binding Sites to statically increase/decrease expression by 10,000-fold 

all Protein Coding Sequences must be codon-optimized 
all Transcriptional Terminators must be >95% efficient and non-repetitive 

CDSs 
optimized 

CDSs NOT 
optimized! 

ribosome traffic on your CDS 



production rate of protein: Low 

CAGUACACAACUUCGCUCGUAGUUC 

ribosome binding site sequence 

Designing DNA to Control Protein Expression 

~35 nucleotides 

Low translation initiation rate a RBS Sequence 



production rate of protein: High 

AAUAUACACAAAGGAGGUUACAACG 

a different ribosome binding site sequence 

Designing DNA to Control Protein Expression 

~35 nucleotides 

High translation initiation rate 
a different 
RBS Sequence 

By designing synthetic ribosome binding sites, 
 we may Control,  Coordinate, and Optimize the Expression of Multiple Proteins 



Factors that Affect Translation Initiation 

1. Hybridization between the mRNA and 3’ end of the 16S rRNA @ the “Shine-Dalgarno” 
2. The unfolding of mRNA structures that overlap with the ribosome’s footprint 
3. Hybridization between the start codon and tRNAfMet 

4. Ribosome stretching or compression, due to long or short spacer regions  
5. mRNA structures in standby sites that block ribosome binding 
6. The time-scale of RNA folding kinetics vs. ribosome assembly kinetics 

RBS sequence CDS sequence 

AUCCGAUAACUAGUCACACAGUAAAAAUUUAGUUAUGACCACCUUUCACAAAGCAAGCGGA

GUGCUUCUUGUGCCGACUUACGAGCAUCUAGCGAGCAUCUAGCGACUACUGAC ... UAA 

Molecular interactions controlling translation initiation 

blocked standby site mRNA structures 



Factors that Affect Translation Initiation 

AUCCGAUAACUAGUCACACAGUAAAAAUUUAGUUAUGACCACCUUUCACAAAGCAAGCGGA

GUGCUUCUUGUGCCGACUUACGAGCAUCUAGCGAGCAUCUAGCGACUACUGAC ... UAA 

RBS sequence CDS sequence 

Effect: Translation Initiation Rate 

Cause:  mRNA-rRNA hybridization 

Cause:  unfolding mRNA structures 

Cause:  non-optimal spacing 

Cause:  blocked standby sites 

Cause:  different start codons 

Many overlapping causes = difficult to design RBS sequences “by eye” 

AUCCGAUAACUAGUCACACAUAAGGAGGUAAGUUAUGACCACCUUCACAAAGCAAGCGGAG

UGCUUCUUGUGCCGACUUACGAGCAUCUAGCGAGCAUCUAGCGACUACUGAC ... UAA 

Let’s insert a consensus Shine-Dalgarno sequence for maximum mRNA-rRNA hybridization 
 Uh Oh!   We created a new mRNA structure that will inhibit translation rate. 



Factors that Affect Translation Initiation 

AUCCGAUAACUAGUCACACAGUAAAAAUUUAGUUAUGACCACCUUUCACAAAGCAAGCGGA

GUGCUUCUUGUGCCGACUUACGAGCAUCUAGCGAGCAUCUAGCGACUACUGAC ... UAA 

RBS sequence CDS sequence 

Many overlapping causes = difficult to design RBS sequences “by eye” 

AUCCGAUAACUAGUCACACAUAAGGAGGUAAGUUAUGACCACCUUCACAAAGCAAGCGGAG

UGCUUCUUGUGCCGACUUACGAGCAUCUAGCGAGCAUCUAGCGACUACUGAC ... UAA 

Let’s insert a consensus Shine-Dalgarno sequence for maximum mRNA-rRNA hybridization 
 Uh Oh!   We created a new mRNA structure that will inhibit translation rate. 

A Biophysical Model 
of Translation Initiation 

for Bacterial mRNAs 

RBS Sequence 

CDS Sequence 

Predicted 
Translation Initiation Rate 
(on a proportional scale) 

We developed a Quantitative Model that Calculates Causes & Predicts their Effect 



The Ribosome Binding Site Calculator 

Predicted Translation Initiation Rate, au 
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A Biophysical Model 
of Translation Initiation 

for Bacterial mRNAs 

RBS Sequence 

CDS Sequence 

Predicted 
Translation Initiation Rate 
(on a proportional scale) 

R2 = 0.766 
Validation data-set 
624 RBS sequences with different 
 CDS reporters 
 Shine-Dalgarno like sequences 
 mRNA structures 
 standby site regions 
 spacer regions 
measured in E. coli DH10B on different days 

We can predict & control translation rate 

Relevant papers 
Salis et. al., Nature Biotechnology, 2009 
Salis et. al., Methods in Enzymology, 2011 
Espah Borujeni et. al., Nucleic Acid Research, 2013 
Farasat et. al., Molecular Systems Biology, 2014 
and other unpublished work from the Salis Lab 



The Ribosome Binding Site Calculator 

Predicted Translation Initiation Rate, au 
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R2 = 0.766 

Coussement et. al. “One step DNA assembly 
for combinatorial metabolic engineering”, 

Metabolic Engineering, 2014 

Third-party Validation R2 = 0.9843 

A Biophysical Model 
of Translation Initiation 

for Bacterial mRNAs 

RBS Sequence 

CDS Sequence 

Predicted 
Translation Initiation Rate 
(on a proportional scale) 



Industrial biotechnology uses many organisms to manufacture products 

The biophysical model of translation initiation 
controls protein expression in diverse bacterial hosts 

Farasat et. al., Molecular Systems Biology, 2014 

Different organisms, 
     same RNA biophysics Slightly different ribosomes 

The RBS Calculator in Different Hosts 



Automated Design to Optimize Expression 

Objective:   design an RBS sequence 
to increase production of a specific protein by 20-fold 

Your initial sequence 

RBS sequence CDS sequence 

Odds of answering this question correctly = like picking a winning NCAA bracket 
How many choices? 35 nt 5’ UTR … 435 = 1.1 x 1021 

AUCCGAUAACUAGUCACACAGUAAAAAUUUAGUUAUGACCACCUUUCACAAAGCAAGCGGA

GUGCUUCUUGUGCCGACUUACGAGCAUCUAGCGAGCAUCUAGCGACUACUGAC ... UAA 

a target 
Protein production rate 

a target translation initiation rate 
a designed 

RBS Sequence 

Biophysical Model 
random RBS 

CDS Sequence 

accept/reject mutation (Metropolis criteria) 

return designed 
RBS sequence 

Yes 
No 

in silico mutate RBS sequence 

close to target? 

Computational Optimization 



Automated Design to Optimize Expression 

Your initial sequence 

RBS sequence CDS sequence 

predict translation init. rate 
1000 au 

AUCCGAUAACUAGUCACACAGUAAAAAUUUAGUUAUGACCACCUUUCACAAAGCAAGCGGA

GUGCUUCUUGUGCCGACUUACGAGCAUCUAGCGAGCAUCUAGCGACUACUGAC ... UAA 

CGAACCGCUAUUCUAGAUAGUUCAAAAACAGAAC 

UAUGCCUUCACAUUCACCAUUCAGAGACCGGUCG 

AUCCGAUAACUAGUCUUUAAGUAAAAAUUUAGUU 

UACCACUAAAACUAACCUAACGAGUAGGUUAUAA 

UAUCAUUAUAUUCAUCGAAUAAGGGGAAUCUACU 

AAAAUUUUCAUAAACAAGGUCGGGGGAUAUCAAG 

100 000 au 

10 000 au 

3 000 au 

300 au 

100 au 

20 x 1000 au = 20 000 au 

20 000 au 

design a 
new RBS 

Objective:   design an RBS sequence 
to increase expression of a specific protein by 20-fold 



Optimizing Protein Expression 

Grunberg et. al., “Building blocks for protein interaction devices”, Nucleic Acid Research, 2010 

Q:   Why do some proteins express better than others? 

In this study, researchers from the Serrano Lab expressed 25 proteins 
 with different RBS sequences, CDS sequences, and protein solubilities/folding 

2 Expression modes: 
Standard:  T7pr + BL21-DE3 at 37C 
Toxic:  T7pr + BL21-DE3-pLysE at 20 C 

the 25 Proteins expressed 
at greatly varying yields 

and host toxicities 
 

Why? 

all CDSs codon-optimized 



Q:   Why do some proteins express better than others? 

In this study, researchers from the Serrano Lab expressed 25 proteins 
 with different RBS sequences, CDS sequences, and protein solubilities/folding 

2 Expression modes: 
Standard:  T7pr + BL21-DE3 at 37C 
Toxic:  T7pr + BL21-DE3-pLysE at 20 C 

Grunberg et. al., “Building blocks for protein interaction devices”, Nucleic Acid Research, 2010 
RBS Calculator prediction (au/1000) 

A: Higher expressed proteins 
had higher predicted 

translation initiation rates 
 

For soluble protein 

all CDSs codon-optimized 

Optimizing Protein Expression 



How does the RBS Calculator Work? 

rate-limiting step 

ribosome turnover 

Boltzmann constant 

Gibbs free energy change  
of ribosome binding 

bound 30S subunits 

RBS sequence on mRNA 

30S subunits 

m R m::R   tot

m::R
exp G

m R
  D

protein 

Translation is a multi-step process 
Translation initiation is often the rate-limiting step 



A Statistical Thermodynamic Model 

The “Ribosome Ensemble” 
many mRNAs 

one mRNA 

 

i i

(i)i
tot

i

m R m ::R

m R
exp G

m ::R


 

 D

 
 

(i)

i tot

i (j)

j tot

m exp G

1 m exp G
j

r




 D

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 translation totexp Gr   D



The Free Energy Model 

 translation totexp Gr   D

mRNAstandbystartspacing:rRNAmRNAtotal GGGGGG DDDDDD

We quantify the strengths of the molecular interactions 
controlling the ribosome’s binding free energy to a mRNA sequence 

slidingunfoldingdistortionstandby ΔGΔGΔGΔG 

assumes thermodynamic equilibrium between a pool of ribosomes and a pool of mRNAs 



An Example of Predicting Translation Rate 

mRNA sequence 

r = 620 au 
(proportional scale) 

DGtotal = 3.1 kcal/mol 

dotted lines = nucleotide base pairing 

We can calculate the Gibbs free energy change when the ribosome binds to an mRNA 
 and use statistical thermodynamics to predict its translation initiation rate 



Important Questions, Systematic Answers 
Q:  How does the ribosome interact with highly structured 5’ UTRs? 

A: The ribosome’s platform domain binds to single-stranded regions in the standby site 

As = 15 + P + D – H  

P - H H D 

the standby site’s 
single-stranded surface area 

controls the ribosome’s ability to bind 

D, P, and H were inter-changeable 
Only the standby site’s surface area matters 

Espah Borujeni et. al., Nucleic Acid Research, 2013 



Important Questions, Systematic Answers 

Spacing, s 

E. coli, flow cytometry, steady-state measurements, M9 media + 0.4% glucose 
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Q: What is the effect of the spacer region length? 
A: If spacing is too long, then translation rate is reduced.  

Too short? Translation rate is also reduced. Optimal spacer region is 5 nt. 

ACACAUAAGGAGGUAAUG 

ACACAUAAGGAGGUACAUG 

ACACAUAAGGAGGUACACAUG 

ACACAUAAGGAGGUACACACAUG 

ACACAUAAGGAGGUACACACACAUG 

ACACAUAAGGAGGUACACACACACAUG 

ACACAUAAGGAGGUACACACACACACAUG 

s = 1 nt 

s = 12 nt 

The Ribosome is Stretched like a Rigid Spring 
DGspacing looks like Hooke’s Law 

Salis et. al., Nature Biotech. , 2009 



Important Questions, Systematic Answers 

530-fold 
same RBS 

17-fold 
same RBS 

E. coli, flow cytometry, steady-state measurements, M9 media + 0.4% glucose 

vs. vs. vs. 21-fold 
same RBS 

Salis et. al., Nature Biotech. , 2009 

Q:  Are Ribosome Binding Sites a “modular” genetic part? 
A: No, re-using the same RBS sequence with different CDS sequences can affect translation 



Important Questions, Systematic Answers 

E. coli, flow cytometry, steady-state measurements, M9 media + 0.4% glucose 

Q: Why does the CDS sequence 
affect translation rate? 

 
A: mRNA structures form 

inside the CDS and 
 between the RBS-CDS. 

These structures 
inhibit translation. 

We measured 
the ribosome’s footprint 

to precisely predict 
which mRNA structures 
will inhibit translation. 

Espah Borujeni et. al., in prep 



Optimizing Multi-Protein Genetic Systems 

Multi-protein genetic systems are more difficult to engineer 

Farasat et. al. Molecular Systems Biology, 2014 
Chiam Yu Ng et. al., Metabolic Engineering, 2015 

a 3-enzyme terpenoid biosynthesis pathway CrtE CrtB CrtI 

Terpenoid biosynthesis  Carotenoid pigment 

Metabolic Pathway Engineering Examples from the Salis Lab 

a 5-enzyme 
Entner-

Doudoroff 
pathway 

Glucose ATP + NADH + NADPH + Pyruvate/G3P 

Edd Eda Pgl Zwf Pgi 

Furfural -ketogluturate 

HmfD HmfA HmfB HmfC HmfE bzDH 

a 6-enzyme furfural catabolic pathway for detoxifying lignocellulosic feedstock 



Optimizing Multi-Protein Genetic Systems 

Farasat et. al. “Efficient search, mapping, and optimization 
of multi-protein genetic systems in diverse bacteria”, Molecular Systems Biology, 2014 

How do we efficiently search for optimal protein expression levels? 

Q:   What are the enzyme expression levels that will 
 maximize the pathway’s productivity? 
 
Bigger Q:  What is the relationship between RBS sequence,  
  expression, and pathway productivity? 

 
3 enzymes = 4-dimensional space 

[CrtE] 

[CrtB] 

[CrtI] 

neurosporene 
productivity 



Optimizing Multi-Protein Genetic Systems 

Systematic metabolic pathway optimization requires three ingredients: 

1.  the ability to quantitatively predict and control enzyme expression 

2.  an efficient way to search for optimal enzyme expression levels 

Which search strategy is better? 

“Missed!” “You’ve sunk  
my battleship!” 



Optimizing Multi-Protein Genetic Systems 

Systematic metabolic pathway optimization requires three ingredients: 

1.  the ability to quantitatively predict and control enzyme expression 

2.  an efficient way to search for optimal enzyme expression levels 

an Optimized RBS Library 



Optimizing Multi-Protein Genetic Systems 

Systematic metabolic pathway optimization requires three ingredients: 

2.  an efficient way to search for optimal enzyme expression levels 

1.  the ability to quantitatively predict and control enzyme expression 

E. coli DH10B, M9 + 0.4% glucose, flow cytometry, n = 3+ 

1   52k 1   104k 125   32k 

Farasat et. al., Molecular Systems Biology, 2014 



Optimizing Multi-Protein Genetic Systems 

Systematic metabolic pathway optimization requires three ingredients: 

2.  an efficient way to search for optimal enzyme expression levels 

1.  the ability to quantitatively predict and control enzyme expression 

3.  the systematic mapping of the expression-activity relationship 

CrtE CrtB CrtI 

optimized RBS libraries for efficient search 

200   72k 150   20k 100   500k 

16 variants 16 variants 16 variants 
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Farasat et. al., Molecular Systems Biology, 2014 

4-dimensional space 

[CrtE] 

[CrtB] 

[CrtI] 

neurosporene 
productivity 



Pathway Productivity Measurements 

E. coli EcHW2f overnight, washed, and then grown in LB + 10 mM arabinose for 7 hours in 
stationary phase neurosporene extracted with hot acetone and quantified at 470 nm,  n = 3 

We randomly selected 73 pathway variants with different RBS sequences 
and found a wide range of pathway productivities 

CrtE CrtB CrtI 



Kinetic Modeling to Predict Pathway Activity 

DNA sequence 
Translation 

Rates 
Pathway 

Productivity 

Prediction? 

CM1, CM2, . . ., CM14: Enzyme complexes 

what we have 
    73 measurements of predicted translation rates of 
 CrtE, CrtB, and CrtI  vs. measured pathway 
 productivities (not a simple pattern) 
 
what we want 
    a continuous model that relates 
    RBS sequences to enzyme expression levels, 
    and enzyme expression levels to pathway fluxes 
 
If we have a model 
    we can predict optimal enzyme expression levels 
    to achieve maximal pathway fluxes 
    and apply other application-specific constraints 



39 
CM1, CM2, . . ., CM14: Enzyme complexes 

]][[]][[ 31 CrtEGPPkispAGPPk
dt

dFPP


]][[][ 43 CrtEGGPPkcomplexFPPcrtEk
dt

dGGPP


24 elementary reactions 

48 unknown k 

Mole balance equations 

identified kinetic parameter values using a genetic algorithm 

Kinetic Modeling to Predict Pathway Activity 

Model Reduction: 38 bounded DOFs,  73 measurements 



DNA sequence 
Translation 

Rates 
Pathway Productivity 

A Sequence-Expression-Activity Map 

Systematic metabolic pathway optimization requires three ingredients: 

2.  an efficient way to search for optimal enzyme expression levels 

1.  the ability to quantitatively predict and control enzyme expression 

3.  the systematic mapping of the expression-activity relationship 



We used the SEA Map to design 19 new pathway variants 
The predicted pathway activities were within 28% of the measurements, on average 

Sequence-Expression-Activity Map Accuracy 

DNA sequence 
Translation 

Rates 
Pathway Productivity 

Kinetic model Thermodynamic model 

Farasat et. al., Molecular Systems Biology, 2014 



Efficient Pathway Optimization 

SEAMAP 
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32k   203k 2000   232k 27k   1347k 
6 variants 8 variants 8 variants 

CrtE CrtB CrtI 

We used the SEA Map to predict the optimal enzyme expression levels  
We applied the RBS Library Calculator again to “Zoom In” on the optimal levels 



Efficient Pathway Optimization 

MAP 
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1.  SEARCH.    2.  MAP.   3.   OPTIMIZE. 

OPTIMIZE 



Using the Sequence-Expression-Activity Map 

Finding the Best Transcription & Translation Rate with a small number of experiments 

Promoter Transcription rate 

Ribosome Binding Site Translation rate 

Pathway productivity 

Model predictions 



Using the Sequence-Expression-Activity Map 

Promoter Transcription rate 

Ribosome Binding Site Translation rate 

Pathway productivity 

Experimental Measurements 

Model predictions 

Finding the Best Transcription & Translation Rate with a small number of experiments 



Entner-Doudoroff  
(ED) pathway 

1 Glucose 

2 pyruvate 

2 NADH 

2 ATP 

2 pyruvate 

1 NADH 

1 ATP 

1 NADPH 

1 Glucose 

Embden–Meyerhoff–Parnas 
(EMP) pathway 

Pathway Engineering Example #2 

The Entner-Doudoroff pathway regenerates NADPH 
Overcoming NADPH limitation is essential to over-producing fuels & materials 

5 minimally allosteric enzymes from Z. mobilis 
now expressed in E. coli 



5 minimally allosteric enzymes from Z. mobilis 
now expressed in E. coli 

Rationally designed operons 
integrated into the E. coli genome 

The Entner-Doudoroff pathway regenerates NADPH 
Overcoming NADPH limitation is essential to over-producing fuels & materials 

Pathway Engineering Example #2 



5-Dimensional Pathway Optimization 

MAGE (Wang et. al, Nature, 2009) 
+ 

a high-throughput reporter for NADPH levels rational design + genome mutagenesis 

ChiamYu Ng et. al., Metabolic Engineering, 2015 

The best pathway variant 
            increased NADPH by 25-fold 



Sequencing Pathway Variants from the Library 

Selected variants 

RBS Sequences   Predicted Translation Rates 

predicted translation rates 
for all five enzymes 

Selected 23 pathway variants 
     with varying mBFP production rates 

Now let’s see what we find … 



A Non-Linear SEA Map 
Not a simple pattern 

but “more of everything” did not result in more NADPH regeneration 

We picked a few 
& re-integrated into 

fresh genomes 



More NADPH = More Product 

precursor limited 

NADPH regeneration 
limited 

* 

MEP + ED variants 

The best ED pathway variant increased natural product biosynthesis by 97% 

Not limited 



Pathway Example #3 

Furfural -ketogluturate 

HmfD HmfA HmfB HmfC HmfE bzDH 

a 6-enzyme furfural catabolic pathway for detoxifying lignocellulosic feedstock 

Hydrolyzed lignocellulose contains cheap sugars (glucose, xylose, arabinose) 
but also several microbial inhibitors (furfural, hydroxy-methyl furfural, acetate) 

This 6-enzyme pathway catabolizes 
5 mM furfural within 6 hours 

and converts to TCA cycle metabolites 



Pathway Example #3 

Furfural -ketogluturate 

HmfD HmfA HmfB HmfC HmfE bzDH 

a 6-enzyme furfural catabolic pathway for detoxifying lignocellulosic feedstock 

Non-linear relationship between 
hmfD expression and pathway activity 



Today’s Topics 

#1:  Designing DNA to Control Protein Expression 
#2:  Optimization of Multi-Protein Genetic Systems 
#3:  Case Studies: Engineered Metabolic Pathways 

A Multi-Protein Genetic System 

multiple proteins working together 
to produce a product 

A Single-Protein Genetic System 

expression & purification 
of a single protein 

More recombinant products are requiring the expression of multiple proteins simultaneously 
Our methods allow you to efficiently engineer & optimize multi-protein genetic systems 

Examples: single-chain antibodies, 
single-subunit enzymes 

Examples: recombinant vaccines, multi-subunit enzymes, 
natural product biosynthesis (antibiotics, therapeutics) 



Clone Less,  Know More 

An Engineering Science for 
Manufacturing Recombinant Products 

Predict the specific DNA sequences that will maximize a product’s titer 
             
    Do it reliably,    for diverse recombinant products. 
    And efficiently,   with less cloning and fewer experiments. 
 

We quantitatively identify optimal expression levels & protein stoichiometries,  
       so the next (similar) product is developed even faster 

Recombinant Enzymes 

Natural Products 

Recombinant Biologics 
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Questions? 



Visit GenScript website for more information: 
http://www.genscript.com/ribosome-binding-site-design.html 
 



RBS Calculator to Verify Codon Optimization 
How do we know if a protein’s coding sequence has been truly codon-optimized? 

Systematically increase the translation initiation rate, and check it. 
 

A “codon-optimized” GFP using frequent codons had a Low Translation Rate Capacity 
But a GFP using fast codons had a High Translation Rate Capacity 

GFP with frequent codons GFP fusion  
with frequent codons 

Predicted Transl. Init. Rate, au Predicted Transl. Init. Rate, au 

Low Translation 
Rate Capacity 

Low Translation 
Rate Capacity 

GFP with fast codons 

High Translation 
Rate Capacity 

Predicted Transl. Init. Rate, au 



Quantifying Pathway Optimality 
Q:  How do we know if the pathway has been fully optimized? 

A:  An optimally balanced pathway has zero-valued flux control coefficients 

crtE translation rate, au  crtE translation rate, au  
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Flux control coefficients (FCCs) quantify the “rate-limiting-ness” of each enzyme’s reactions 
0: It is not rate-limiting .               1: it’s the only rate-limiting step. 

When a pathway’s  enzymes have FCCs = 0, then precursor biosynthesis is limiting. 

 FCCs: Fell, 1992; Kholodenko & Westerhoff, 1993 
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Quantifying Pathway Optimality 
Q:  How do we know when to increase precursor biosynthesis rates? 
A:  Only when the downstream pathway has been optimally balanced. 

optimally balanced 
pathway variant 
(FCCs near zero) 

rate-limited 
pathway variant 

(FCC for CrtE = 0.6) 

increasing precursor 
biosynthesis rates 

dxs translation rate, au  dxs translation rate, au  

We used the RBS Library Calculator to systematically vary precursor biosynthesis rates 
Pathway productivity only increased when the pathway was optimally balanced 


