Analyzing antibody sequence for recombinant antibody expression

Hangxing Yu, Ph.D Senior Scientist, GenScript May 20, 2015

Presentation Outline

1

2

Antibody basics, structure and function

-) Antibody production *in vivo*
- 3 Antibody database and analysis
- 4 Optimization of antibody production

Antibody basics, structure and function

- 2 Antibody production *in vivo*
- 3 Antibody database and analysis
- 4 Optimization of antibody production

1

What is an Antibody?

- An antibody (aka Immunoglobulin) is a large Y-shaped protein produced by B cells.
- Used by the immune system to neutralize foreign objects.

Types of Antibody in vivo

Name	Function	Light Chain	Heav Cha	vy lin	(a) lgG	(b) lgD	(c) lgE
lgA	Found in mucosal areas	κ or λ κ or λ	α1 α2	 2	Hinge region		
lgD	Antigen receptors on B cells	κorλ	δ		(d) IgA (dimer)	(e) IgM (pentamer)	J.
lgE	Binds to allergen and triggers histamine release	κorλ	3		J chain	Disulfide bond J cha	
IgM	Secreted from B cells with very high avidity	κorλ	μ		Ţ		
lgG	Majority of antibody-based immunity	κorλ	γ1 γ2 γ3 γ4	γ1 γ2a γ2b γ3		~8	8

Structural and Functional Units of IgG

- "Y"-shaped molecule
- Fab region determines its antigen specificity. (Fv region and CDR)
- Fc region determines the effects.
- Hinge region.

Antibody-Antigen Interaction

- Each antibody binds only to a **specific** antigen.
- Ab-Ag interaction are based on non-covalent binding between Ab and Ag.
- The hinge region allow better binding.

Antibody-Antigen Interaction

- Antibody and antigen interact by spatial complementarity.
- Weak and non-covalent bonds. electrostatic interactions hydrogen bonds Van der Waals forces hydrophobic interactions
- Binding between antibody and antigen is reversible.

Complementarity Determining Regions (CDRs)

- Ab binding residues are mainly located in CDRs.
- 6 CDRs form the combining site:
 L1, L2, L3, H1, H2, H3.
- CDR-H3 and L3 have a distinctive role in antigen recognition.

Antibody basics, structure and function Antibody production *in vivo* Antibody database and analysis Optimization of antibody production

Activation of B cells to Produce Abs

http://classes.midlandstech.edu/carterp/Courses/bio225/chap17/lecture3.htm

Antibody Gene Rearrangement

С

© 2012 Pearson Education, Inc.

Make Research Easy

Antibody Gene Rearrangement

- Somatic Hypermutation allows slight amino acid differences in the variable domains.
- Class-switch recombination produce antibodies of different isotypes or subtype.

Production of mlgG by Hybridoma

Mouse challenged with antigen

- Used for production of monoclonal antibody.
- Inventor: Milstein and Köhler.
- Nobel Prize in Physiology or Medicine in 1984.

Recombinant Antibody Production

Antibody basics, structure and function Antibody production *in vivo* Antibody database and analysis Optimization of antibody production

Online Antibody Analysis Tool

Bioinf

http://www.bioinf.org.uk/abs/labmanual/

• IMGT

http://www.imgt.org/IMGTrepertoire/

AbCheck - Antibody Sequence Test http://www.bioinf.org.uk/abs/seqtest.html

IgBlast

http://www.ncbi.nlm.nih.gov/igblast/

• Sequence alignment tools

http://blast.ncbi.nlm.nih.gov/Blast.cgi http://www.ebi.ac.uk/Tools/msa/clustalo/

Kabat Numbering

Light chain

	0	1	2	3	4	5	6	7	8	9
	10	11	12	13	14	15	16	17	18	19
	20	21	22	23	24	25	26	27		
	27A	27B	27C	27D	27E	27F			28	29
	30	31	32	33	34	35	36	37	38	39
	40	41	42	43	44	45	46	47	48	49
	50	51	52	53	54	55	56	57	58	59
	60	61	62	63	64	65	66	67	68	69
	70	71	72	73	74	75	76	77	78	79
	80	81	82	83	84	85	86	87	88	89
	90	91	92	93	94	95				
	95A	95B	95C	95D	95E	95F	96	97	98	99
	100	101	102	103	104	105	106			
	106A							107	108	109
Hoa	wy cha	vin								
nea	vy cha									
	0	1	2	2	4	E	G	7	0	0
	10	11	1.2	12	14	15	16	17	10	10
	20	21	22	22	24	10	26	27	20 T0	20
	20	21	22	20	24	20	20	27	20	29
	357	320	52	55	24	55	36	37	30	30
	10 10	JJB //1	12	12	4.4	45	16	17	10	10
	50	51	52	40	44	40	40	47	40	49
	527	52D	520	53	5.4	55	56	57	5.8	50
	52A 60	52B 61	62	63	61	65	66	67	68	69
	70	71	72	73	74	75	76	77	79	70
	80	91	82	15	/4	75	70	//	70	19
	00 007	01 02D	02 02C	02	0.1	05	96	07	00	00
	02A 00	02B 01	920	03	04 Q/	92	96	07	98	99
	100	21	54	20	27	55	50	21	50	55
	1004	100B	1000	1000	100F	1005	100G	1004	100T	100.т
	100K	101	102	103	104	105	106	107	108	109
	110	111	112	113	TOJ	100	100	107	100	105

http://www.bioinf.org.uk/abs/

IMGT Analysis

Make Research Easy

IMGT Analysis – V domain

V domain strands and loops ^a	IMGT positions	Lengths ^b	Characteristic Residue@Position ^c
A-STRAND	1–15	15 (14 if gap at 10)	
B-STRAND	16–26	11	1st-CYS 23
BC-LOOP	27–38	12 (or less)	
C-STRAND	39–46	8	CONSERVED-TRP 41
C'-STRAND	47–55	9	
C'C"-LOOP	56–65	10 (or less)	
C"-STRAND	66–74	9 (or 8 if gap at 73)	
D-STRAND	75–84	10 (or 8 if gaps at	
		81, 82)	
e-strand	85–96	12	hydrophobic 89
F-STRAND	97–104	8	2nd-CYS 104
FG-LOOP	105–117	13 (or less, or more)	
G-STRAND	118–128	11 (or 10)	V-DOMAIN J-PHE 118 or J-TRP 118 ^d

CDR-L1

Start	Approx residue 24
Residue	always a Cys
before	
Residue	always a Trp. Typically Trp-Tyr-Gln, but also, Trp-Leu-Gln, Trp-
after	Phe-Gln, Trp-Tyr-Leu
Length	10 to 17 residues
Residue after Length	always a Trp. Typically Trp-Tyr-Gln, but also, Trp-Leu-Gln, Tr Phe-Gln, Trp-Tyr-Leu 10 to 17 residues

CDR-L2

Start	always 16 residues after the end of L1
Residues	generally Ile-Tyr, but also, Val-Tyr, Ile-Lys, Ile-Phe
before	
Length	always 7 residues (except NEW (7FAB) which has a deletion in
	this region)

CDR-L3

Start	always 33 residues after end of L2 (except NEW (7FAB) which has the deletion at the end of CDR-L2)
Residue before	always Cys
Residues after	always Phe-Gly-XXX-Gly
Length	7 to 11 residues

Make Research Easy

CDR-H1

Start	Approx residue 26 (always 4 after a Cys) [Chothia / AbM
	defintion];
	Kabat definition starts 5 residues later
Residues	always Cys-XXX-XXX-XXX
before	
Residues after	always a Trp. Typically Trp-Val, but also, Trp-Ile, Trp-Ala
Length	10 to 12 residues [AbM definition];
	Chothia definition excludes the last 4 residues

CDR-H2

Start	always 15 residues after the end of Kabat / AbM definition) of
	CDR-H1
Residues	typically Leu-Glu-Trp-Ile-Gly, but a number of variations
before	
Residues after	Lys/Arg-Leu/Ile/Val/Phe/Thr/Ala-Thr/Ser/Ile/Ala
Length	Kabat definition 16 to 19 residues;
	AbM (and recent Chothia) definition ends 7 residues earlier

CDR-H3

Start	always 33 residues after end of CDR-H2 (always 2 after a Cys)
Residues before	always Cys-XXX-XXX (typically Cys-Ala-Arg)
Residues after Length	always Trp-Gly-XXX-Gly 3 to 25(!) residues

Make Research Easy

Region	Position	Sequence Characterization	Length
CDR-L1	24-34	CW/WYQ/WLQ/WFQ/WYL	10-17
CDR-L2	50-56	IY/VY/IF	7
CDR-L3	89-97	CFG*G	7-11

Light chain: Amino acids sequence (237 AA)

Leader sequence-FR1-CDR1-FR2-CDR2-FR3-CDR3-FR4-Constant region-Stop codon

MKLPVRLLVLMFWIPASSSDVVMTQIPLSLPVSLGDQASIS<u>C</u>RSSQSLVHSNGNTYLH<u>WYL</u>QKPGQ SPKLL<u>IY</u>KVSNRFSGVPDRFSGSGSGTDFTLKISRVEAEDLGVYF<u>C</u>SQSTHVPT<u>FGGG</u>TKLEIKRADAA PTVSIFPPSSEQLTSGGASVVCFLNNFYPKDINVKWKIDGSERQNGVLNSWTDQDSKDSTYSMSST LTLTKDEYERHNSYTCEATHKTSTSPIVKSFNRNEC

Region	Position	Sequence Characterization	Length
CDR-H1	31-35B	C****W/WV/WI/WA	10-12
CDR-H2	50-65	LQWIGK/R L/I/V/F/T/A T/S/I/A	16-19
CDR-H3	95-102	C**WG*G	3-25

Heavy chain: Amino acids sequence (458 AA)

Leader sequence-FR1-CDR1-FR2-CDR2-FR3-CDR3-FR4-Constant region-Stop codon

MGWSCIFLFLLSVTVGVFSEVQLQQSGPELVKPGASVKIS<u>CKASG</u>YSFTGYFMN<u>WV</u>KQSHGKS<u>LE</u> <u>WIG</u>RINPNNGDSLYNQKFKG<u>KAT</u>LTVDKSSTTAHMELLSLTSEDSAVYY<u>CGR</u>DYFFDY<u>WGQG</u>TTL TVSSAKTTPPSVYPLAPGSAAQTNSMVTLGCLVKGYFPEPVTVTWNSGSLSSGVHTFPAVLQSDLYT LSSSVTVPSSTWPSETVTCNVAHPASSTKVDKKIVPRDCGCKPCICTVPEVSSVFIFPPKPKDVLTITLT PKVTCVVVDISKDDPEVQFSWFVDDVEVHTAQTQPREEQFNSTFRSVSELPIMHQDWLNGKEFKC RVNSAAFPAPIEKTISKTKGRPKAPQVYTIPPPKEQMAKDKVSLTCMITDFFPEDITVEWQWNGQPA ENYKNTQPIMDTDGSYFVYSKLNVQKSNWEAGNTFTCSVLHEGLHNHHTEKSLSHSPGK

AbCheck - Antibody Sequence Test

Sequences This page allows you to test an antibody sequence against the Kabat sequence database. Any unusual residues (occurring in < 1% of chains in the database) will be reported to you. This allows the identification of potential cloning artifacts and sequencing errors. The current Kabat database contains 6014 light chains and 7895 heavy chains.

Structures Click here for details of the method used for checking your antibody sequence.

Software If you get any error or warning messages, please check you have entered your sequence correctly. Strange sequence features may cause the alignment stage to fail. Loops longer than anything observed in the current Kabat database will also cause the alignment to fail. If, after checking your sequence, you *still* get errors or warnings, please send me EMail: <u>andrew@bioinf.org.uk</u> and I'll see if the programs can be modified to accomodate your sequence. Alternatively, your antibody may just be very strange!

Identify Chothia canonical classes for your antibody sequence.

Awards Enter the **amino acid** sequence (1-letter code) of your Fv fragment (optionally you may include the whole Fab fragment, but only the Fv portion will be tested).

Enter the light chain **amino acid sequence** here:

DVVMTQIPLSLPVSLGDQASISCRSSQSLVHSNGNTYLHWYLQKPGQSPKLLIYKVSNRFSGVPDRFSGSGSGTDFTLKI A SRVEAEDLGVYFCSQSTHVPTFGGGTKLEIK

Enter the heavy chain amino acid sequence here:

EVQLQQSGPELVKPGASVKISCKASGYSFTGYFMNWVKQSHGKSLEWIGRINPNNGDSLYNQKFKGKATLTVDKSSTTAH MELLSLTSEDSAVYYCGRDYFFDYWGQGTTLTVSS

Info

Links

Ab Check - Sequence Analysis

Antibody Sequence Test Results

If no results appear below, please send me EMail with your sequence as an error has occurred!

If you get lots of errors, please make sure you have used the AMINO ACID sequence (not DNA) and don't have any leader sequence residues

Kabat alignment results

Alignment with consensus:

L1 D L2 V L3 V L4 M L5 T L6 Q L7 I L8 P L9 L L10 S	The following unusual sequence features have been identified:
L11 L L12 P L13 V L14 S L15 L L16 G L17 D L18 Q	 L7 = I in 0.542% of light chains (17 examples) L106A = K in 0.542% of light chains (17 examples)

Antibody basics, structure and function Antibody production *in vivo* Antibody database and analysis Optimization of antibody production

Rapid Transient Gene Expression

Advantages of GenScript Recombinant Abs

> Advantages:

- Prominent 293 and CHO suspension systems promote large-scale and fast-delivery of recombinant protein and monoclonal antibody up to gram level.
- A strong commitment of scientific teams with many years of experience in developing highly productive stable cell lines with strict expression stability evaluation.
- Comprehensive professional process development enhances the protein expression capacity of cell lines.
- GenScript has successfully delivered >500 proteins in mammalian expression system with >100 stable cell lines.

Licensed NRC Technologies

➢ HEK293

- Highly stable 293EBNA1 clone
- Increase recombinant protein yields through coexpression
- Afford the advantages of serum-free production
- Rapid and high yield recombinant protein production
- Availability of a Master Cell Bank (MCB) for cGMP production

> CHO-pTT

- Provides comparable protein expression level to those of HEK293 system
- Rapid production of recombinant proteins that require post-translation modification for research or pharmaceutical use.

Transient gene expression in CHO-3E7 cells using an optimized process and pTT vectors yield antibody titers closely matching those obtained in 293 cells (LODs 11266 & 11565)

National Research Conseil national Council Canada de recherches Canada

MamPower[™] Guaranteed Services

Customer provides	Amount	Purity & endotoxin level options	Timeline	Deliverables	Price starting from
Antibody sequence	5mg	● ≥95% by SDS-PAGE	5-6 weeks	 LC and HC in pUC57 vector Optimized gene sequence report Purified antibody at listed amount and purity QC data 	\$2,999
	10mg 25mg 50mg 100mg	 ≥95% by SDS-PAGE Endotoxin ≤10EU/mg Concentration ≥1mg/ml 	6-8 weeks		
	250mg 500mg	≥95% by HPLCEndotoxin ≤1EU/mg	8-10 weeks		

➢ Key features of MamPower™ guaranteed recombinant antibody production services

- Gene synthesis is included in the package no additional cost to you.
- Guarantee recombinant antibody amount, purity and desired endotoxin level no cost to you if we don't deliver as promised.
- Flexible scale from 5mg to 500mg.
- Competitive price.
- Fast turnaround time as little as 5 weeks.

Make Research Easy

Case Study

- Antibody is used by the immune system to neutralize foreign objects (antigens).
- Antibody-antigen binding residues are mainly located in CDRs.
- Analysis of sequence could assist to evaluate the expression level of a certain antibody.
- GenScript could offer you the professional service for optimized recombinant antibody production.

About GenScript

Upcoming webinar

Expression vectors: how to choose, or customize, vectors for gene & protein expression Presented by Rachel Speer, Ph.D, Technical Writer, GenScript June 3, 2015/11:00 AM EST

Visit our website for archived webinars: <u>http://www.genscript.com/webinars.html</u>

Contact today's presenter: <u>hangxing.yu@genscript.com</u>

Thank you

