Avoiding Peptide Assay Failure: Hidden Problems and Solutions

Presented by:

Tiffany Gupton Campolongo, Ph.D.

Presentation Overview

- 1 Introduction
- (2) Key properties of custom peptides
- Symptoms/Sequence evaluation
- Solutions Summary & Resources
- **(5)** Q&A

About GenScript

Intrinsic Custom Peptide Properties

1

Contamination

- o TFA counter-ions
- Protecting groups
- Truncated sequences
 - Deletion sequences
 - Endotoxin
 - Water

2

Insolubility

- Precipitation
- **Aggregation**
- Secondary structure formation

3

Instability

- Oxidation
- Deliquescence
 - Colorization
 - Deamidation
 - Hydrolysis
 - Cyclization
- Secondary structure formation

Troubleshooting Peptide Assays

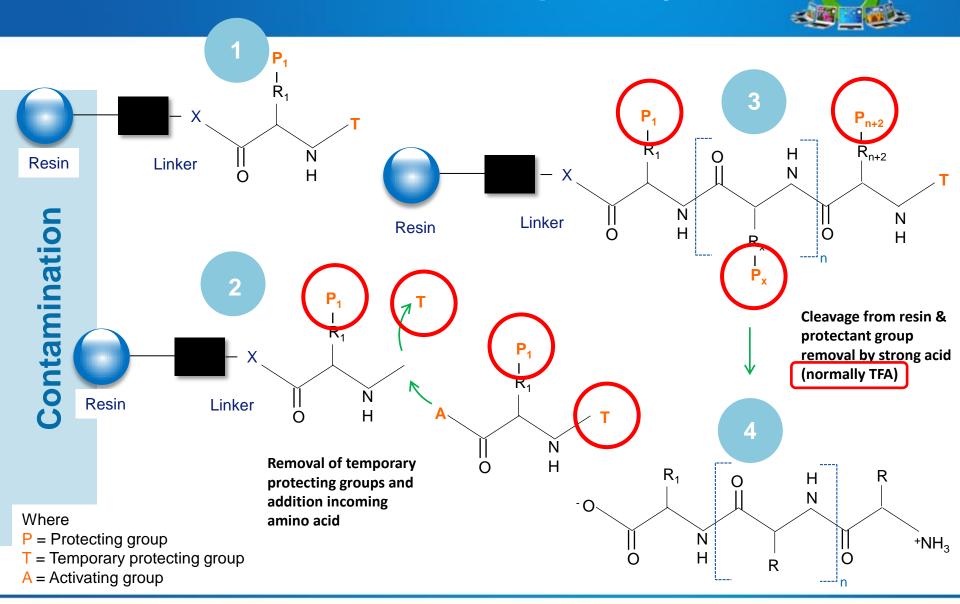
Evaluate Sequences

Examples:

- Calculate net charge
- Identify sequences having propensity for secondary structure formation
- Identify residues that bind contaminants

Identify Symptoms

Examples:


- Aberrant cellular or tissue growth
 - Aberrant peptide bioactivity
- Abnormal physical peptide characteristics

Employ Solutions

- Pre-emptive sequence optimization
- Peptide preparation
- Assay optimization
- Specialized services

Overview of Solid Phase Peptide Synthesis

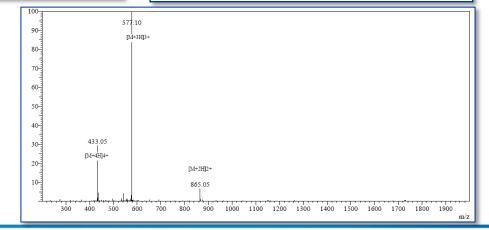
Quality Control Analyses

Peptide Purification

Quality Control

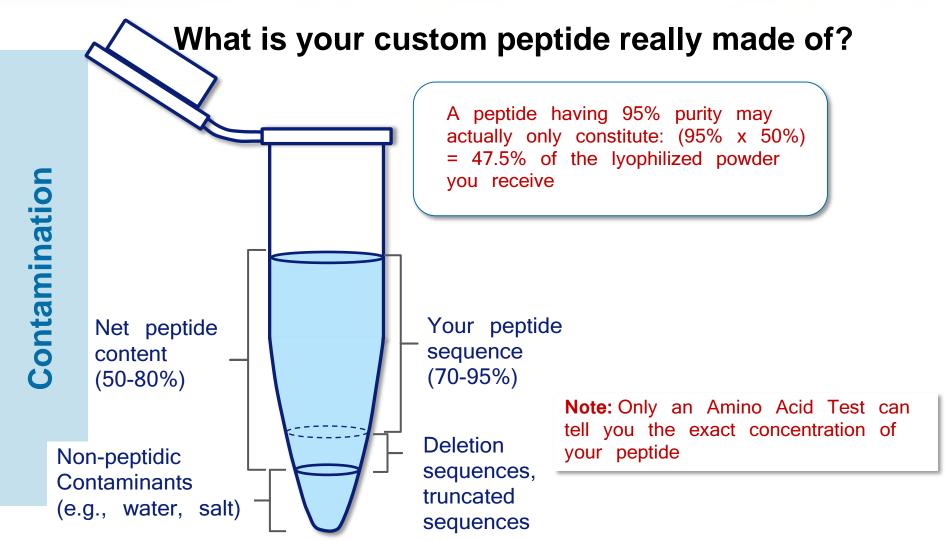
HPLC Trace Order Confirms peptide purity

Chromatogram mV 1000 750-500-250


Peptide Synthesis

Peak Table					
Peak#	Retention Time	Area	Area %		
1	13.619	139296	1.453		
2	13.916	359996	3.756		
3	14.054	8707888	90.846		
4	14.283	79644	0.831		
5	14.400	37342	0.390		
6	14.987	261173	2.725		
Total		9585339	100.000		

MS Trace


Sontamination

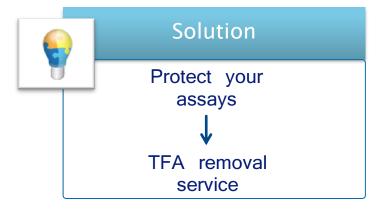
Confirms major ion species by mass

Custom Peptide Composition

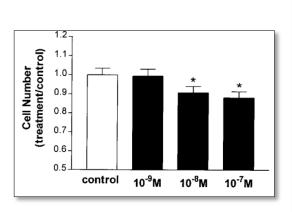
Trifluoroacetic acid (TFA) Counter-ion **Contamination**

Sontamination

Symptoms


- Erratic cell or tissue viability, enzyme assay results
- IR spectroscopy data
- Reduced mass spec sensitivity
- Peptide degradation

Affected Sequences


All sequences, especially those containing positively charged:

- lysine
- histidine
- arginine

Case Study: TFA effects on cell and tissue culture

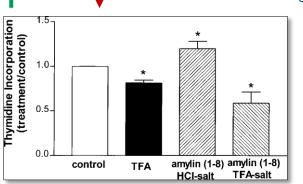
Effect of [TFA] on fetal rat osteoblast growth after 24 h. *P <0.05 indicates data statistical significantly different from control.

Cell Type	Assay Type	[TFA] Effect
Fetal rat	Cell number	↔ (10 ⁻⁹ M)
osteoblasts	Cell Humber	↓ (10 ⁻⁷ M - 10 ⁻⁸ M)
		↔ (4x10 ⁻⁹ M)
Canine articular chondrocytes	Cell number	↓ (4x10 ⁻⁸ M)
-		↓ (4x10 ⁻⁷ M)
Neonatal mouse calvariae	Thymidine incorporation	↓ (2 x 10 ⁻⁷)
Increase	Decrease	→ No change

 TFA at concentrations higher than 10-9 M can decrease cell and tissue growth

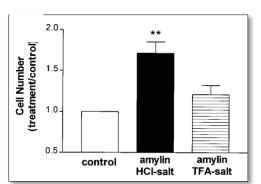
*Figures adapted from Fig. 1 of Cornish J et al. Trifluoroacetate, a contaminant in purified proteins, inhibits proliferation of osteoblasts and chondrocytes. (1999) Am J Physiol Endocrinol Metab 277: E779-E783.

Case Study: TFA effects on cell and tissue culture



		Cell Type: Fetal Rat Osteoblasts					
		Amylin HCl-salt	Amylin TFA-salt	CGRP HCI-salt	CGRP TFA-salt	Rat calcitonin HCl-salt	Rat calcitonin TFA-salt
Parameter Measured	Cell number	1	*	11	1	*	Ţ

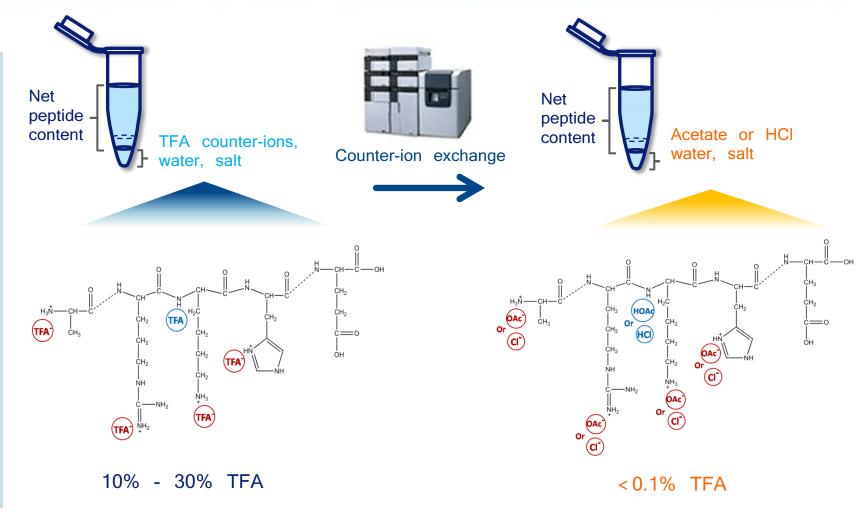
		Tissue Type: Neonatal Mouse Calvariae	
		Amylin HCl-salt	Amylin TFA-salt
Parameter Measured	Thymidine incorporation	1	↓


→ No change

 Residual TFA in purified peptides can decrease cell and tissue growth

Decrease

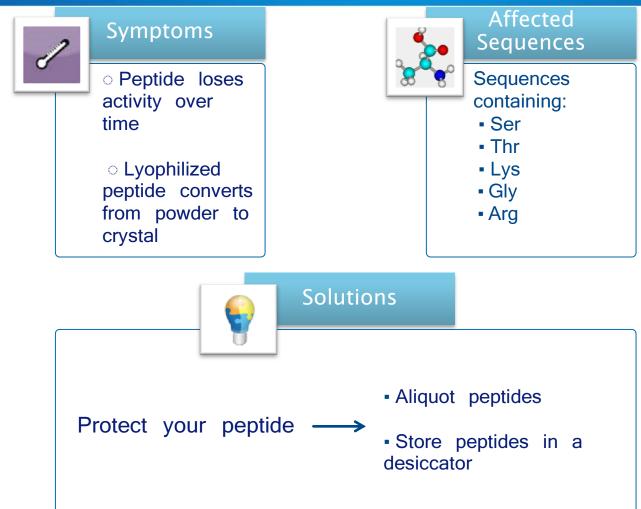
Increase


Effect of TFA or HCl purified peptides on cell and tissue growth after 24 h
*P <0.05 and **P <0.003 and indicates data statistical significantly

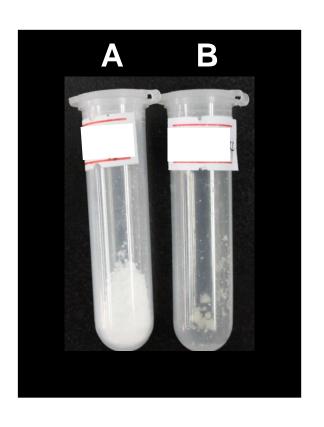
different from control.

*Figures adapted from Fig. 2 and 5. of Cornish J et al. Trifluoroacetate, a contaminant in purified proteins, inhibits proliferation of osteoblasts and chondrocytes. (1999) Am J Physiol Endocrinol Metab 277: E779-E783.

GenScript's guaranteed TFA removal service



Peptide Deliquescence



*Deliquescence: Gradual dissolution by the absorption of moisture from the air

Case Study: Resolving deliquescence

Contamination

- Lyophilized peptide after treatment with excipients
- Lyophilized peptide without excipient treatment

Peptide Insolubility

Symptoms

Turbidity or precipitation following peptide dissolution

Affected Sequences

Sequences:

>5 AA long, and containing >50%:

- Tryptophan
 - Isoleucine Valine

- Leucine
- Tyrosine

Methionine

Phenylalanine

Peptide insolubility solutions

Peptide Protection

- Follow the solubility chart recommendations
- Request solubility testing

Solutions

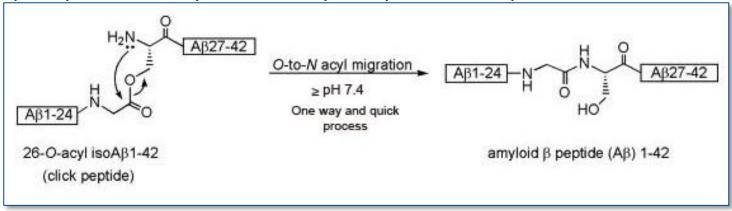
Residue substitutions

Replace:

- Tryptophan
- Isoleucine
- Leucine
- Phenylalanine
- Methionine
- Valine
- Tyrosine

With:

- Aspartic acid
- Lysine
- Arginine
- Histidine
- Glutamic Acid

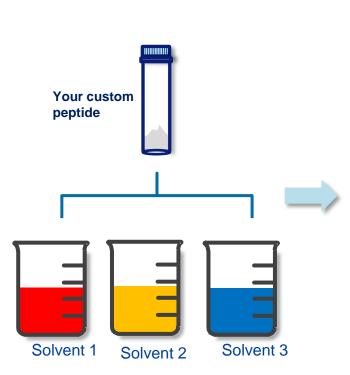


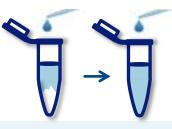
- Incorporate of O-acyl bonds
- Incorporate hydrophilic linkers (e.g. Lys-Lys-Lys)
- For libraries introduce a frame shift

Case study: O-acyl bond incorporation

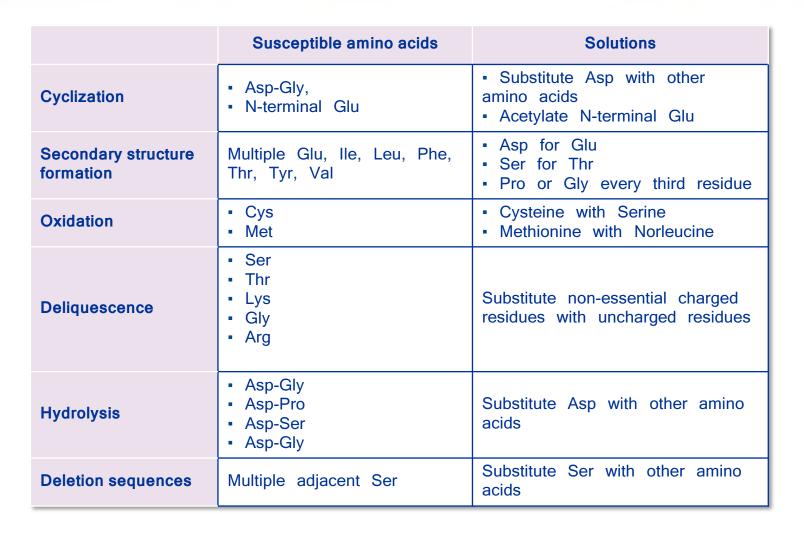
β-amyloid solubility increased by O-acyl bond incorporation

	Click β-amyloid	Native β-amyloid
Solubility in water	15 mg/ml	0.14 mg/ml


Kiso et al. (2008) Click Peptides: Design and Applications


*GenScript's Click peptide service introduces a an o-acyl bond into the peptide sequence can greatly increase solubility

Solubility Testing Service



Example Solubility report results

Solvent	pH Value	Dissolution Achieved?	Peptide Concentration
			N.A.
Aqueous s	olution	Dissolved	mg/mL
			N.A.
	pH 5	Dissolved	mg/mL
Buffer	pH 7	N.A.	N.A.
	pH 10	N.A.	N.A.
Organic solvent		Undissolved	N.A.
		Dissolved	mg/mL

Peptide Instability: Design Considerations

Peptide Oxidation

Symptoms

- Peptide loses activity over time
- Peptide color changes from white to yellow, tan or brown

Affected Sequences

Sequences containing:

- Cysteine
- Tryptophan
- Methionine

Peptide Oxidation

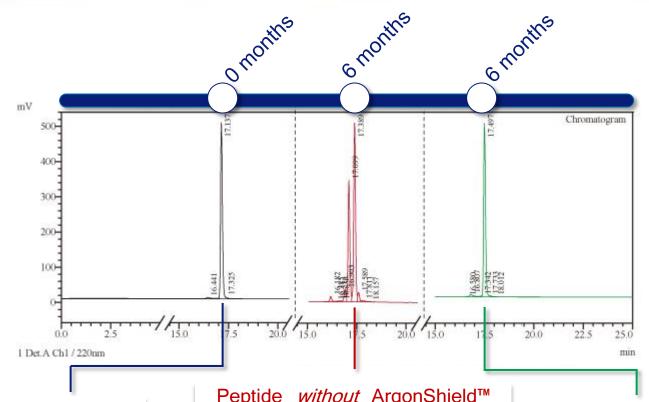
Design **Optimization Peptide Protection**

Solutions

Replace:

- Cysteine with Serine
- Methionine with Norleucine

- Aliquot peptides
- Flush peptides with argon gas and store in a tightly sealed container

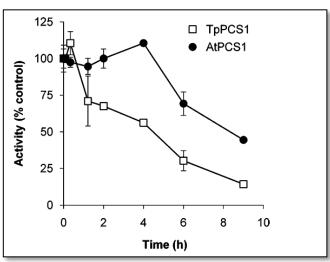

Assay Protection

- Add reductants: DTT, TCEP, β-mercaptoethanol,
- Flush buffers with argon gas
- Reconstitute buffers and peptide with argon-flushed water in an anaerobic chamber
- Perform assays in anaerobic chamber

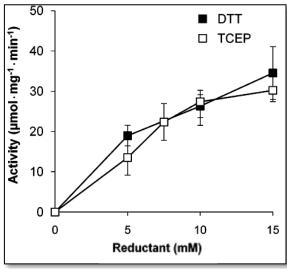
Case Study: Effects of Oxidation

*ArgonshieldTM
Technology protects
peptides by
applying an argon
gas headspace and
airtight seal

Peptide after synthesis and purification


Peptide *without* ArgonShield™ protection after 6 months of storage

(smaller peaks denote new oxidized peptide species)


Peptides with
ArgonShield™ protection
after 6 months
of storage

Case study: Reducing/preserving oxidative residues

*Oxidation sensitive dipeptydyl transpeptidase enzyme activity assayed after experimental preparation and removal from an anaerobic chamber

*Oxidation sensitive dipeptydyl transpeptidase enzyme activity assayed with increasing levels of reductants

Peptide Color Change

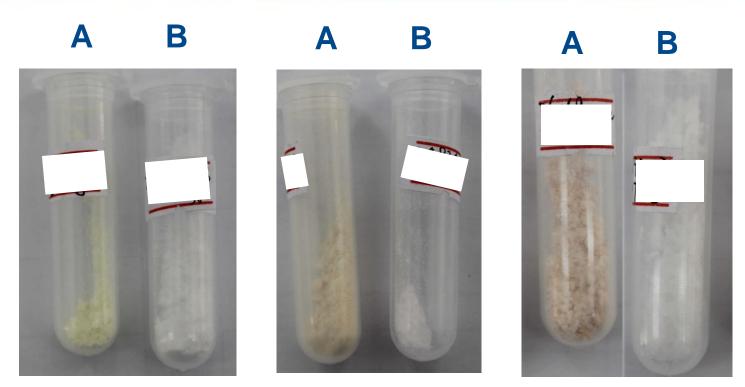
Symptoms

- Erratic colorimetric assay data
- Lyophilized peptide is tan, yellow or brown

Affected Sequences

Sequences containing:

- Trp
- Tyr
- Cys
- Glu
- Asn


Solutions

Color removal service

*Lyophilized peptides can change color due to oxidation, or contamination by colored protective groups

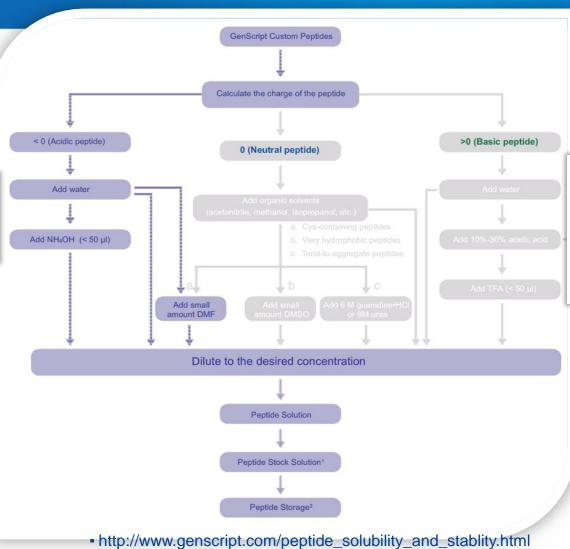
Case Study: Removing Peptide Color

- A Lyophilized peptide after synthesis
- **B Lyophilized peptide after proprietary de-colorization treatment**

Resources: Stability Guidelines Chart

Do's and Dont's of Peptide Handling

For ALL peptides	 DO aliquot lyophilized peptide according to daily experimental needs (Try GenScript's free aliquoting service) DO avoid repeated freeze-thaw cycles DON'T store peptides long-term in solution DON'T repeatedly open the stock peptide vial
For peptides containing Cys, Met, or Trp residues	 DO limit peptide exposure to air DO purge assay buffers with argon or nitrogen gas DO store peptides in tightly capped vials
For peptides containing Asp, Glu, Lys, Arg, or His	 DO limit peptide exposure to air DO store lyophilized peptides in a desiccator DO store peptides in tightly capped vials
For peptides that must be stored in solution	 DO avoid repeated freeze-thaw cycles DO aliquot your peptide solution according to daily experimental needs DO use sterile buffers to dissolve your peptide DO filter your peptide using a 0.2 µm filter to remove bacterial contamination


http://www.genscript.com/peptide_storage_and_handling.html

Resources: Design Tools

Peptide MW calculator

 Calculates MW considering a selection of over 60 modifications

Peptide Property calculator

- Calculates isoelectric point
- Generates automatic solubility recommendations

- https://www.genscript.com/ssl-bin/peptide_mw
- https://www.genscript.com/ssl-bin/site2/peptide_calculation.cgi

Summary

Categories	Solutions	Specialized Services
Contamination	Amino acid substitutionsStorage in desiccator	TFA counter-ion removalMoisture removal
Hydrophobicity	Amino acid substitutionsO-acyl bond incorporationHydrophilic linker incorporationFrame shifting	O-acyl bond incorporationFree Solubility testing
Instability	 Amino acid substitutions O-acyl bond incorporation Aliquoting Application of argon gas headspace Use of reductants in assay Perform assay in anaerobic chamber 	 Free Aliquoting ArgonsheildTM De-colorization service

GenScript's Specialized Services List

Service	Price	Turnaround Time (in addition to peptide synthesis)	Deliverables
Amino acid analysis	Typically \$100 + 5 mg additional peptide, sequence dependent	1 week	 Amino acid analysis test report
TFA Removal	Typically \$70 + 5 mg additional peptide, sequence dependent	2 weeks	Lyophilized peptideTFA content test report
Click peptide service	Sequence dependent	No additional time	 Lyophilized peptide
Solubility testing	Free	No additional time	Lyophilized peptideSolubility test report
ArgonSheild™	Free	No additional time	 Lyophilized peptide in argon flushed, sealed vials
De-colorization treatment	Project dependent	1 week	 White Lyophilized peptide (by visual assessment)
Moisture removal	Project dependent	1 week	 Lyophilized peptide (by visual assessment)
Aliquoting	Free for first 5 vials, then \$2.00 per vial	No additional time	Lyophilized peptide aliquoted into sepcified # of vials

Thank you for your participation We wish you all success in your Research Email me: Tiffany.Campolongo@GenScript.com

Register for other webinars in the GenScript Webinar Series @ http://www.genscript.com/webinars.html

May 21, 2014/ 11:00 am EST

Gene variant libraries: design, construction, and research applications - Rachel Speer, Ph.D.

May 28, 2014/ 1:00 pm EST

Protein or peptide antigen: choosing the optimal immunogen for antibody production - Jessica Kaplunov, Ph.D.

June 5, 2014/ 2:00 pm EST

Stem cell culture: choosing optimal conditions for expansion and differentiation - Matthew Riolo, Ph.D.

June 11, 2014/ 1:00 pm EST

Recombinant protein expression & purification: challenges and solutions - Liyan Pang, Ph.D.

June 18, 2014/ 2:00 pm EST

Can CRISPR/Cas9 off-target genomic editing be avoided? Ways to improve target specificity - Maxine Chen, Ph.D

June 25, 2014/ 2:00 pm EST

Building a Synthetic Eukaryotic Genome - Sc2.0 - Leslie Mitchell, Ph.D., NYU Langone Medical Center

On Demand (Originally aired May 8, 2014)

Optimizing conditions for recombinant soluble protein production in E. coli, - Keshav Vasanthavada