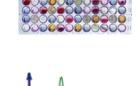

Gene Variant Libraries: Design, Construction, and Research Applications

Rachel Speer, Ph.D.

Synthetic Biology Libraries

GenScript – The most cited biology CRO

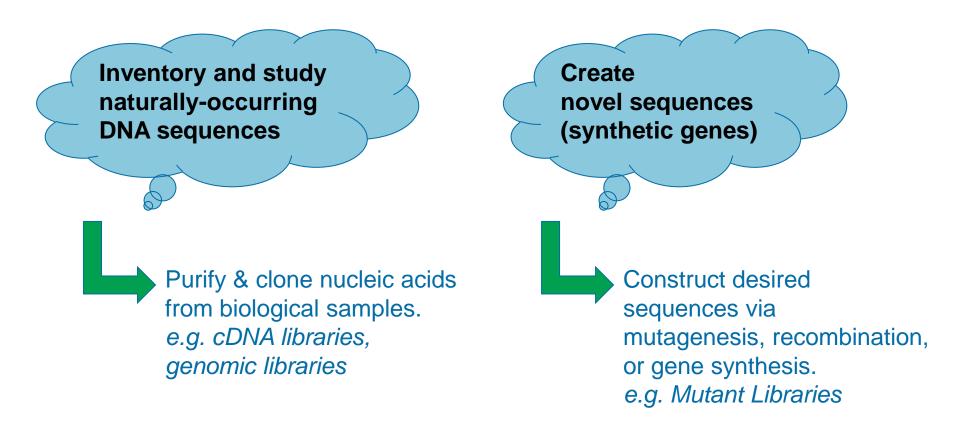


4

Part 1: What are Gene Libraries?

a collection of many unique DNA sequences

- cloned into a vector
- propagated in micro-organisms
- screened for sequences of interest
- individually sequenced before or after assay



The source of your insert DNA depends on your goal

Mutant Libraries

ENU

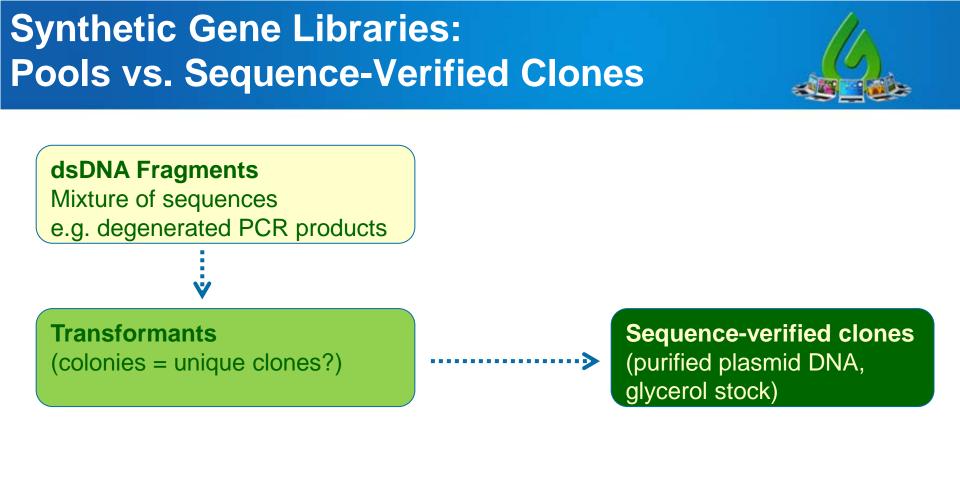
in vivo libraries

G.

VS.

	50	60	70	80
			[] .	
wildtype	GVVPILVELDGDVNG	HKFSVSGEGE	GDATYGKLTLI	FICT
clone A01	GVVPILVELDGDVNG	HKF SV <mark>F</mark> GEGE	GDATYGKLTL	KFICT
clone A02	GVVLILVELDGDVNG	HKFSVSGEGE	GDATYGKLTL	KFICT
clone A03	GVVPILVELDGD	HKFSVSGEGE	GDATYGKLTL	KFICT
clone A04	GVVPILVELDGDVNG	HKFSVS	DATYGKLTL	KFICT
clone A05	GIVPILVELDGDVNG	HKFEVSGEGE	GDATYGKLTL	KFICT
clone A06	GVVPILVELDGDVN GVVPILVELDGDVNG	HKFSVSGOGE	GDATYGKLTL	KFICT
clone A07	GVVPILVELDGDVNG	HKFSVSGEGE	GDATYGKLTL	KAICT
clone A08	GVVPILVEL GDVNG	HKFSVSGEGE	GDA <mark>S</mark> YGKLTLI	KFICT
	–		-	
clone H12	GVVPILVELDGDVNG	HKF SVSGE <mark>R</mark> E	GDATYGKLTL	KFICT

Create mutant DNA sequences


Express in organism

Screen for desired phenotypes

Expose organisms to a mutagen

Screen for phenotypes of interest

Identify gene mutation

inexpensive & faster to create"quick & dirty" initial screening

VS.

high-qualityknown identityreliable replication

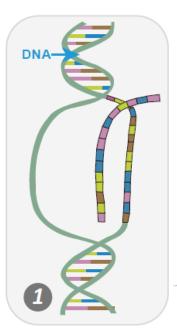
- When you want to create something that doesn't already exist in nature.
- When you want to be systematic and unbiased
- When expressing genes in a different model organism
- When you know the sequences you want

- When you want to create a library from a biological sample
- When you don't know what kind of variants you want

Expression-Ready Gene Variant Libraries

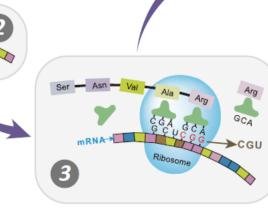
- Mutant Libraries for Protein Engineering
- Synthetic Biology Libraries

ORFs cloned into expression vectors allow functional characterization of gene variants


- family members
- isoforms / splice variants
- disease-related variants
- mutants

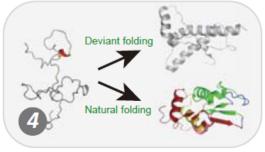
Why create synthetic libraries of naturally occurring genes?

- Ensure sequence accuracy
- Get expression-ready clones (optional: with tags)
- Improve expression levels through codon optimization


Codon Optimization improves protein expression

2. mRNA processing and stability

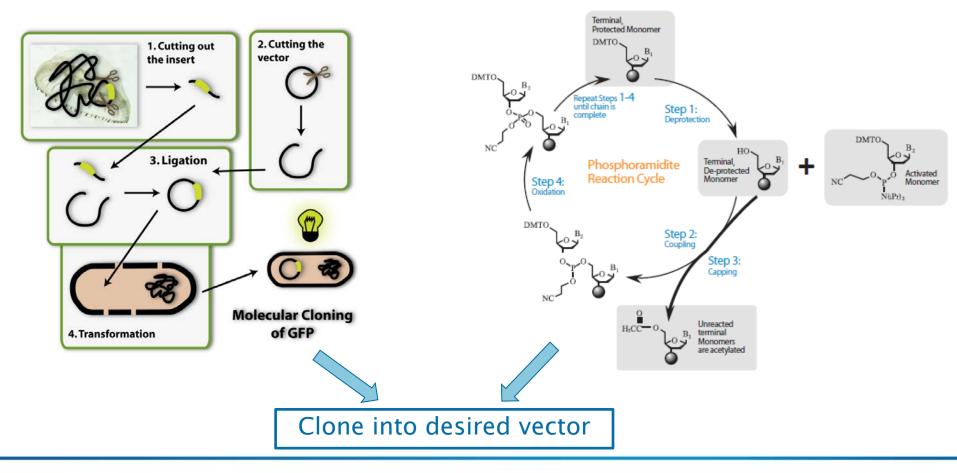
- cryptic splice sites
- mRNA secondary structure
- stable free energy of mRNA



- cis-regulatory elements (TATA box, termination signal, protein binding sites, etc.)
- chi sites
- polymerase slippage sites

3. Translation

- codon usage bias
- ribosomal binding sites (e.g. IRES)
- premature polyA sites


4. Protein folding

- codon context
- codon-anticodon interaction
- translation pause sites

Constructing Gene Libraries

Traditional Molecular Cloning: Cut & Paste naturally occurring sequences, PCR-based SDM as needed Gene Synthesis: *de novo* Chemical Synthesis of DNA does not require a template

Choosing the most appropriate vector

Type of Cloning Vector	Advantages	Disadvantages
Plasmid	Replicate most prolifically; 700 copies per cell; most popular for inserts <5kb	Insert size Limited to 15kb (often lose larger inserts)
Bacteriophage	5–15kb	
Cosmids	replicate well, hold inserts 30–45kb, rarely lose inserts	Somewhat unstable, susceptible to recombination if contain repeats
BAC - Bacterial Artificial Chromosome	Insert size up to 350kb, fewer chimeras than YACs,	Only 1 copy per cell
YAC - Yeast Artificial Chromosome	Insert size up to 1000kb	High rate of chimeras

Plasmids: cloning vectors vs. expression vectors

Amplify, manipulate, and store DNA sequences

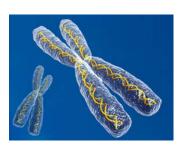
Cloning Vector

- high copy number
- multiple cloning region
- antibiotic resistance / lacz for selection

Efficiently express a sequence in my cell/tissue of interest

Expression Vector

- promoter for transcription
- Kozak (eukaryotic) or Shine-Dalgarno
- (prokaryotic) sequences for translation
- Viral vectors for *in vivo* delivery

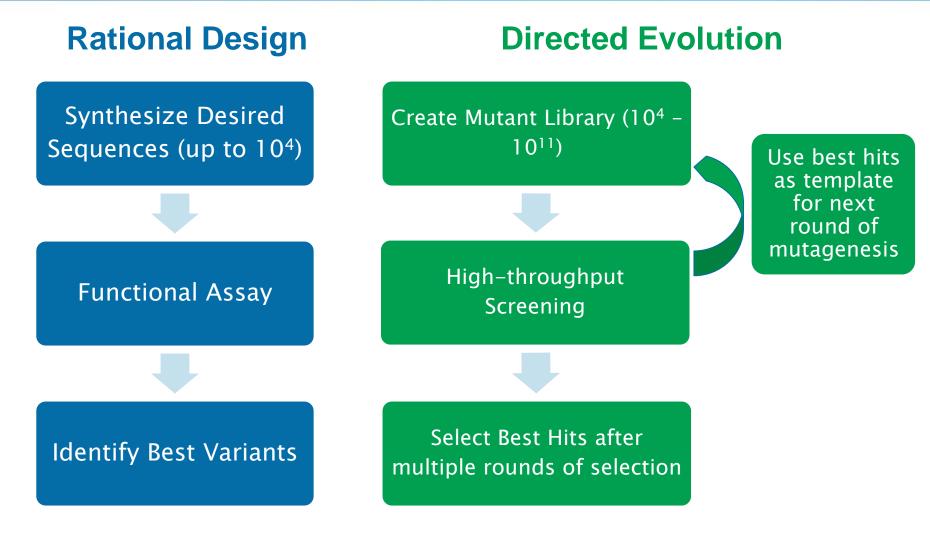

You can create a library directly using your choice of Expression Vector; no need to shuttle!

Extra-chromosomal plasmid DNA

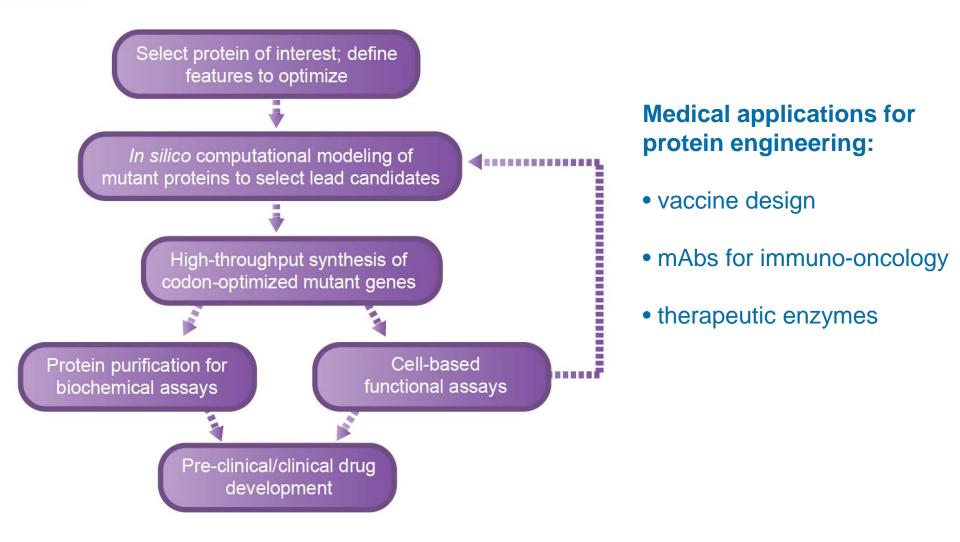
- strong promoter \rightarrow overexpression
- ideal for protein purification, reporter assays

Targeting Vector for integration into chromosomal DNA

- CRISPR/Cas9 is simpler and more efficient than ZFN, TALEN, Cre-lox
- ideal to study gene function under endogenous promoter, normal stoichiometry


Design Strategies for Synthetic Libraries

Gene Variant Libraries


- Mutant Libraries
 - Rationally designed
 - Systematic / Saturated
 - Truncation variants
 - Random / degenerated
- Synthetic Biology Libraries

Protein Engineering Strategies

Case Study: rational design of new drugs based on computational modeling

Systematic Point Mutation Libraries

	50	60	70	80
			. []]	
wildtype	GVVPILVELDGDVNG	HKFSVSGE	GEGDATYGKLTI	KFICT
F58A	GVVPILVELDGDVNG	HKASVSGE	GEGDATYGKLTI	KFICT
F58C	GVVPILVELDGDVNG	HKCSVSGE	GEGDATYGKLTI	KFICT
F58D	GVVPILVELDGDVNG	HKDSVSGE	GEGDATYGKLTI	KFICT
F58E	GVVPILVELDGDVNG	HKESVSGE	GEGDATYGKLTI	KFICT
F58G	GVVPILVELDGDVNG	HKGSVSGE	GEGDATYGKLTI	KFICT
F58H	GVVPILVELDGDVNG	HKESVSGE	GEGDATYGKLTI	KFICT
F581	GVVPILVELDGDVNG	HKISVSGE	GEGDATYGKLTI	KFICT
F58K	GVVPILVELDGDVNG	HKKSVSGE	GEGDATYGKLTI	KFICT
F58Y	GVVPILVELDGDVNG	HKYSVSGE	GEGDATYGKLTI	KFICT

Site-Saturation Mutagenesis

•a single amino acid

•multiple residues

1	M V S K G E E L F T G V V P I L X X L D G D V X G H CCATGGTGAGGAAAGGCGAAGAACTGTTTACCGGCGTGGTGCCGATCTC <mark>NNSNNS</mark> CTGGATGGCGATGTC <mark>NNS</mark> GGCCAT GGTACCACTCGTTTCCGCTTCTTGACAAATGGCCGCACCACGGCTAAGACNNSNNSGACCTACCGCTACACNNSCCGGTA NeoI
81 81	K F S V S G E G E G D A T Y G K L T L K F I C T T G K AAATTTAGCGTGAGCGGCGAAGGCGAAGGCGATGCGACCTATGGCAACTGACCCTGAAATTTATTT
161 161	L P V P W P T L V T T L T Y G V Q C F S R Y P D H M ACTGCCGGTGCCGTGGCCGACCCTGGTGACCACCCTGACCTATGGCGTGCGGTGCGTTATCCGGATCATATGA TGACGGCCACGGCACCGGCTGGGACCACTGGTGGGACTGGATACCGCACGGCACTAGGCCTAGTATACT
241 241	K Q H D F F K S A M P X G Y V Q E R T I F F K D D G N AACAGCATGATTTTTTTAAAAGCGCGCATGCCC <mark>NNS</mark> GGCTATGTGCAGGAACGTACCATTTTTTTTAAAGATGATGGCAAC TTGTCGTACTAAAAAAATTTTCGCGCTACGGCNNSCCGATACACGTCCTTGCATGGTAAAAAAATTTCTACTACCGTTG
321 321	Y K T R A X V K F E G D T L V N R X E L K G I D F K E TATAAAACCCGTGCC <mark>NNS</mark> GTGAAATTTGAAGGCGATACCCTGGTGAACCGT <mark>NNS</mark> GAACTGAAAGGCATTGATTTTAAAGA ATATTTTGGGCACGCNNSCACTTTAAACTTCCGCTATGGGAACCACTTGGCANNSCTTGACTTTCCGTAACTAAAATTTCT
401	D G N I L G H K L E Y N Y N S H N V Y I M A D K Q K Agatggcaacattctggggccataaactggaatataactataacagccataacgtgtatattatggcggataaacagaaaa

Scanning Libraries and Sequential Permutation Libraries

GVVPILVELDGDVNGHKFSVSGEGEGDATYGK GVVPILVELDGDVNGAKFSVSGEGEGDATYGK GVVPILVELDGDVNGHAFSVSGEGEGDATYGK GVVPILVELDGDVNGHKASVSGEGEGDATYGK GVVPILVELDGDVNGHKFAVSGEGEGDATYGK

<u>GVVPILVELDGDVNGHKFSVSGEGEGDATYGK</u> GVVPILVELDGDVNGXKFSVSGEGEGDATYGK GVVPILVELDGDVNGHXFSVSGEGEGDATYGK

GVVPILVELDGDVNGHXFSVSGEGEGDAIYGK GVVPILVELDGDVNGHKXSVSGEGEGDATYGK GVVPILVELDGDVNGHKFXVSGEGEGDATYGK Alanine scanning

Consecutive site-saturations

GVVPILVELDGDVNGHKFSVSGEGEGDATYGK GVVPILVELDGDVNGXKFSVSGEGEGDATYGK GVVPILVELDGDVNGXXFSVSGEGEGDATYGK GVVPILVELDGDVNGXXXSVSGEGEGDATYGK

Sequential Permutation

Mutating only 6 residues of interest yields *many* unique sequences

- Site-saturated: 64 codons
- NNS:
- Trimer library: 20 a.a.
- Rationally designed SDM

64⁶ =68,719,476,736

 $32^6 = 1,073,741,824$

 $20^6 = 64,000,000$

2*2*8*4*3*3= 1152

Truncation Variant Library

Valuable for Structural Biology:

- •Optimize protein solubility and stability
- Identify minimal domains required for folding, conformational stability, protein-protein interactions, catalytic activity

Random Mutagenesis for Directed Evolution

	50	60	70	80
				[
wildtype	GVVPILVELDGDVNG	HKFSVSGEGE	GDATYGKLTL	KFICT
clone A01	GVVPILVELDGDVNG			
clone A02	GVVLILVELDGDVNG	HKFSVSGEGE	GDATYGKLTL	KFI <mark>C</mark> T
clone A03	GVVPILVELDGD			
clone A04	GVVPILVELDGDVN	HKFSVS <mark>A</mark> EGE	CDATYGKLTL:	KFICT
clone A05	GTVPILVELDGDVNG	HKFEVSGEGE	GDATYGKLTL	KFICT
clone A06	GVVPILVKLDGDVN	HKFSVSGOGE	GDATYGKLTL	KFICT
clone A07	GVVPILVELDGDVN	HKFSVSGEGE	GDATYGKLTL	KIICT
clone A08	GVVPILVEL <mark>E</mark> GDVNG	HKFSVSGEGE	GDA <mark>S</mark> YGKLTL	KFICT
	–		-	
clone H12	GVVPILVELDGDVNG	HKFSVSGE <mark>R</mark> E	GDATYGKLTL	KFICT

Controlled randomization of complete reading frame

	50	60	70	80
wildtype	GVVPILVELDGDVNG			
clone A01	GVVPILVELDGDVNG			
clone A02	GVVPILVELDGDVNG			
clone A03	GVVPILVELDGDVNG	HKFSVSG	GDATYG <mark>KLTL</mark>	KFICT
clone A04	GVVPILVELDGDVNG			
clone A05	GVVPILVELDGDVNG	HKFSVSGGE	GDATYGKLTL	KFICT
clone A06	GVVPILVELDGDVNG			
clone A07	GVVPILVELDGDVNG			
clone A08	GVVPILVELDGDVNG	HKFS <mark>A</mark> SGEGE	GDATYG <mark>KLTL</mark>	KFICT
clone H12	GVVPILVELDGDVNG	HKFSVSGEG	GDATYGKLTL	KFICT

Controlled randomization of partial reading frame

Error-prone PCR for random mutations

• Polymerase, cations, dNTPs, cycles

Degenerate Oligos for site-saturation / sequential permutation libraries

• Single or combinations

Trimers for efficient protein engineering

• Replace codons instead of single nucleotides

Which library type is best?

Depends on:

•Your starting knowledge

•Your goals

•Your screening capacity

Bigger isn't always better!

	Curr Opin Struct Biol. 2013 Jun 23/3):402 a har
	Library methods for structural biology of challenging proteins and their complexes. Hart DJ ¹ , Waldo GS. Author information
	Hart DI ¹ Welds so
	Auto group waldo GS
	Author information
	Abstract
	Genetic engineering of
	the domain composition of a t
	Genetic engineering of constructs to improve solubility or stability is a common approach, <u>but it is en</u> the domain composition of a target is poorly understood, or if there are insufficient et phases of subcloning or mutation and expression often prove upger are insufficient et
	problem and involve construction of a expression often prove uncur
	improvements in construct behavior of large libraries of 03 003, Epub 2013 Mar 26.
	these experimentary and the second doi: 10.1016/j.copbio.2013.03.000 and the second doi: 10.1016/j.copbio.2013.03.000 and the second doi: 10.1016/j.copbio.2013.03.000 and
	ris Ristechnol, 2013 Dec;24(6):1017-22: the for chemical biotechnology
<u>Curr O</u>	problem and involve construction of large libraries of the prove unew integration of the prove unew improvements in construct behavious these experimented to the set of the set
rec	ombination.
Nord	Carst A. Ulling
Nore	Biotechnol J. 2007 Feb;2(2):180-91. generate diverse libraries, Better libraries, generate diverse libraries, gene
Aut	Better libra-
Alar	
ADS	tein engineering has traditionally reli <u>Chaparro-Riggers</u> JF ¹ , <u>Polizzi KM</u> , Bomme
Pro	tein engineering has to be screening Author information Author information
wn	ich require high-throughput of the information proaches to semi-rational library co
ар	brown by which improved industry Det
ef	
of	relatively few variants due DNA sy knowledge to limit library size, while sum of the size
bi	ology, namely multiplexes in a computational modeling is increasingly used as an alternative to an apply construct large, rational libric choose particular and bioinformatic allowing for the state and the state of
ra	apidly construct large, taken efficiency of the second modeling and bioinformatics, while still allowing for the identificative to rational limiting diversity at each efficiency design could compare automatics at each efficiency at each efficience at each efficiency at each effi
e	proceed features that point and the international amino acid residues to vary in order to internative to rational automated, further radius acid residues to vary in order to increasing databased
F	
1	relatively few teach engineering is increasingly used as an alternative to rational ology, namely multiplexed DNA sy knowledge to limit library size, while still allowing for the identification of variable apidly construct large, rational libr choose particular amino acid residues to vary in order to increasing databank of protein library design could comp search complex fitness landscap also has the potential to expan protein library action and protein library size.
	also has the are are and a set of the and a
	apidly constitution and permit efficient choose particular amino acid residues to vary in order to increasing databank of automated, further reducing the library size. Search complex fitness landscar also has the potential to expansive t
	e sevright © 2013 Lisertes
	PMID: 23540421 IPubMed - indexed for MEDLINEI
	PMID: 23540421 IPUDItes

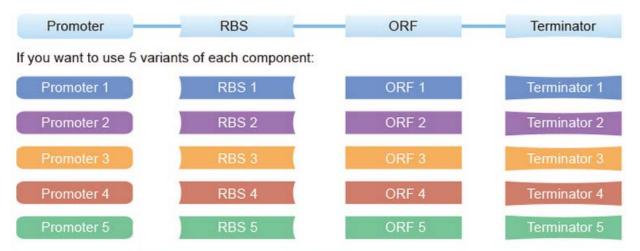
Rationally designed Mutant library for Promoter-Bashing

Research Field: Agriculture/Plant Biology

Challenge: Validate a new computational algorithm for identifying novel gene regulatory sequence motifs by systematic mutationSolution: Synthesize a small library of constructs harboring systematic mutations in the 5'

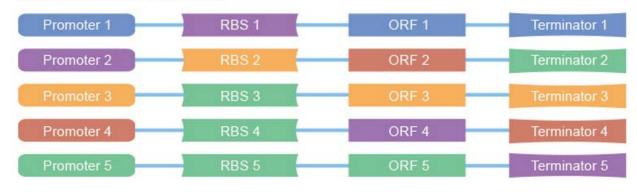
intergenic sequence.

GR2A										
1	2	3	4	5	6	7	8	9	10	11
GGCGCGCACC	ACCTGGGGCC	GGTACGTCGG	GAAGTGCCCA	CGCC <mark>TGGGC</mark> A	CGTCCAGCTT	TTCGTTGAAG	GATACCTGCG	TCTGCCACCT	ACGECCACTA	CGGCGCGCGT
TTATATACAA	CAAGTTTTAA	TTGCATGATT	TCCTGTAAAC	ATAAGTTTAC	ATGAACTAGG	GGATGGTCCT	TCGCAAGTAT	GAGTAACAAG	CATAAACAGC	ATTATATATG
12	13	14	15	16	17	18	19	20		
CCCGCCCGCG	TCTAAACAAG	CCCAAACGGC	CTTTAAACGG	CCTCGGTTCT	CGCAGTAGGG	GGGCCTCTCT	TGACAGGGGG	AACACTGTCC	CAAAGCCTTC	CCAGGATTAC
AAATAAATAT	GAGCCCACCT	AAACCCATTA	AGGGCCCATT	AAGATTGGAG	ATACTGCTTT	TTTAAGAGAG	GTCACTTTTT	CCACAGTGAA	ACCCTAAGGA	AACTTCGGCA
								^TAIR	^EST	
GR11A										
			2	3	4	5	6	7	8	9
			GGGGGCG	GGG AGGGGGG	GGC GCCAGGG	GTT GTCTAGG	SCCG TTAAACO	GCT CAGTAG	AGTG TCCCTAA	ACC CCAGCCTAAA
			TTTTTTT	TTT CTTTTTT	ΤΤΑ ΤΑΑCTT1	TGG TGAGCTT	TAAT GGCCCA	ATAG ACTGCT	CTGT GAA <mark>AGCO</mark>	CAA AACTAAGCCC
10	11	12	13	14	15	16				
CCCGCCC	CGC CTTTGCT	FGCC ATGCCGG	TCT AGCCTCC	CAA AGCTCTT	GAG AAGGATA	AGC ACCCCGA	AAA CGGGGTO	GCC GAGGACT	TACT AATGGTA	AGA CCCCT
AAATAAA	ATA AGGGTAG	STAA CGTAATT	GAG CTAAGAA	ACC CTAGAGG	TCT CCTTCGC	CTA CAAAATO	CCCC ATTTTG	ATAA TCTTCA	GCAG CCGTTG	CTC AAAAG
						^TAIR			^EST	


Davis IW, Benninger C, Benfey PN, and Elich T. POWRS: Position-Sensitive Motif Discovery PLoS One. 2012; 7(7): e40373. doi: 10.1371/journal.pone.0040373

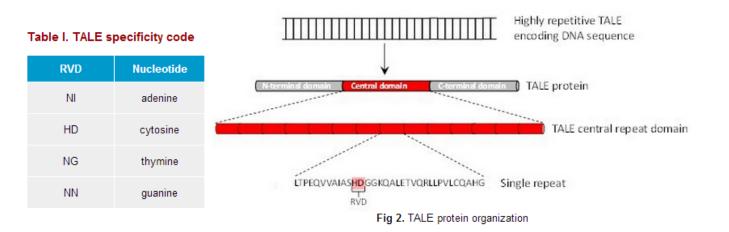
Design Strategies for Synthetic Libraries

- Mutant Libraries
- Synthetic Biology Libraries
 - Combinatorial assembly variants
 - Synthetic Genomes / Synthetic Organisms


Combinatorial Libraries

Then you will need a combinatorial assembly library containing 5×5×5=625 unique composite sequences

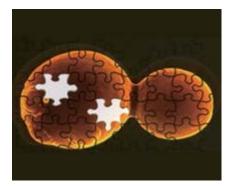
Just a few of those combinations:



Case Study: combinatorial assembly library for gene targeting / genome editing

Kim, Y. *et al.* A library of TAL effector nucleases spanning the human genome. *Nat. Biotechnol.* **31**, 251–258 (2013).

- created TALENs for 18,740 unique protein-coding human genes
- synthesized 84 TALE plasmids containing all possible RVD combinations



Codon-optimized gene synthesis solves problems for TALEN Combinatorial Library

- 1. Limit sequence similarity
- 2. Exclude rare codons to maximize translation efficiency
- 3. Guarantee accuracy of highly-repeated sequences

Synthetic Genomes: a new model for in vivo mutant libraries

GenScript is proud to be a contributing partner in the Sc2.0 International Consortium whose goal is to build a designer synthetic eukaryotic genome.

Sc2.0 – The Synthetic Yeast Genome Project

SCRaMbLE, a built-in inducible diversity generator

Goals:

Deduce the limits of chromosome structure
Accelerate new strain development for biofuels & medical applications

Building a Synthetic Eukaryotic Genome – Sc2.0 June 25, 2014/ 2:00 pm EST Presented by: Leslie Mitchell, Ph.D., NYU Langone Medical Center Register now

Case Study: combining multiple design strategies in an "incognito library"

King, S. R. F. *et al.* Phytophthora infestans RXLR Effector PexRD2 Interacts with Host MAPKKK{varepsilon} to Suppress Plant Immune Signaling. *Plant Cell* **26**, 1345–1359 (2014).

Design strategies:

- 1) gene variants: multiple PexRD2-like family members
- 2) structure-led mutagenesis: 5 specific PexRD2 mutants
- **3) combinatorial assembly**: mutant genes fused with GFP, FLAG, or YN tags for different assays

Construction method:

A combination of *de novo* gene synthesis, SDM, and recombination

GenScript Toolkit

Library Type	Service	Advantages
Expression-Ready Clones	GenEZ ORF Cloning or Custom Cloning	 choose your vector 10µg sequence-verified plasmid DNA
Codon-Optimized Genes	OptimumGene + Gene Synthesis	 increases protein expression optional: protein expression evaluation
Sequence-Verified Synthetic Library 25-10,000 variants	GenPlus Next-Gen Gene Synthesis	 cost-effective HT platform 4µg sequence-verified plasmid DNA
Mutant Library – Rationally Designed 10 ¹ -10 ⁶ variants	Site-Directed Mutagenesis Library, Scanning Point Mutation	•Choose sequence-verified clones or mixed library
Mutant Library – Systematic or Randomized 10 ³ - 10 ¹¹ variants	Sequential Permutation Libraries or Randomized and Degenerated Libraries	 10μg of dsDNA up to 10¹¹ variants pooled clones in your choice of vector pooled glycerol stock up to 10⁹
Truncation Variants	Truncation Variant Library	•Up to 2000 variants within 4 weeks
Combinatorial Variants	Combinatorial Assembly	•4µg sequence-verified plasmid DNA
Genome / Chromosome / metabolic circuits	GeneBricks	~10kb building blocks100% guaranteed sequence accuracy

- Thank you for attending!
- Please submit questions through chat.
- Please complete the survey you'll receive by email.
- Check upcoming and archived webinars at <u>www.genscript.com/webinars.html</u>
- Email me any time: <u>rachel.speer@genscript.com</u>