Oligo Pools:
Design, Synthesis, and Research Applications

Presenter: Marcelo Caraballo, Senior Scientist of CustomArray

Date: December 13, 2018
CONTENTS

01 Oligo synthesis technology

02 Design of oligos for application needs

03 Applications using oligo pools
CONTENTS

01  Oligo synthesis technology

02  Design of oligos for application needs

03  Applications using oligo pools
What is an oligo pool?

- Using an *in situ array* technology, the synthesis of oligonucleotides can benefit from the same parallelization that has revolutionized the DNA sequencing field.

- The end product is a *library* of thousands to hundreds of thousands oligos that is completely defined by the customer at a tiny fraction of the cost of making each oligo individually via traditional oligo synthesis techniques.
In situ array synthesis

All in situ array oligo synthesis technologies have to solve the same central question.

Oligo synthesis

- Electrochemical
- Light-based chemistry
- Inkjet Printing

How to spatially segregate chemical reactions on a planar, or mostly planar, surface without using physical containment (walls)?
The 3 main branches of array synthesis

Light-based array synthesis
- Uses custom phosphoramidites with light sensitive protecting groups (NPOC) and localized light (photolithography, DLP, laser light, etc) to perform the spatial segregation.
  - Expensive and poor synthesis fidelity. Some incarnations suffered from high equipment costs.
  - Largely abandoned now.
The 3 main branches of array synthesis

**Inkjet printing**

- Benefits from off-the-shelf reagents that are inexpensive and very reproducible
- Suffers from workflow bottlenecks due to equipment restrictions
- Large complicated, high-tech inkjet printing devices are difficult to build, maintain, and operate
The 3 main branches of array synthesis

Electrochemical synthesis

- Leverages the semi-conductor industry to achieve the most reproducible and high-throughput synthesis possible
- The “chip” is the technology, whereas the synthesizer is a simple fluid mover
- Chips can be made by tens of thousands easily by any semi-conductor foundry
- Fastest synthesis in the industry with high sequence fidelity due to the flexibility of using a simple synthesizer with an advanced chip

Oligo synthesis

Electrochemical
- Light-based chemistry
- Inkjet Printing
Electrochemical oligo synthesis using CMOS technology

- Software applies voltage to sets of specific electrodes
- Electrode activation controls chemical reactions at each individual electrode on the microarray
But first, a primer on oligo synthesis

• The current incarnation of chemical oligo synthesis dates back to Marvin Caruthers at the University of Colorado, Boulder in the early 1980’s.

• Various modifications and improvements have followed, but all current chemical oligo synthesis processes flow directly from that landmark work.
4 steps to add one nucleotide

• Each nucleotide addition requires 4 steps
  • Detritylation
  • Activation and Coupling
  • Capping
  • Oxidation

• Repeat steps for next nucleotide
Normal phosphoramidite chemistry with electrochemical deprotection

BASE = protected A or T or G or C

1. Ac₂O, lutidine
2. I₂, pyridine, H₂O, THF
CustomArray™ technology

- Detritylation requires acid (H+), TCA in MeCl2
- CustomArray generates acid *electrochemically* at the electrode surface
Proton confinement

Minimize $\text{H}^+$ half-life distance

Virtual Flasks

Acid confined above electrode

Unconfined

Acid diffused away from electrode

Bromophenol Blue dye added for illustrative purposes
Electrochemical synthesis
CustomArray™ versions

12K CustomArray
Up to 12,472 oligos

90K CustomArray
Up to 92,918 oligos
How are oligo pools constructed?

1. Using the electrode array as a starting point, we individually synthesize oligonucleotides at each point of the array
2. After the synthesis is complete oligos are removed from the surface into a common tube
3. After some minor processing, we ship the oligos as ssDNA suspended in TE buffer
Quality control of oligo pools

- Semi-Conductor technology allows for electronic verification of electrode activation.
- Performance of all electrodes is verified and logged for each oligo pool.

Post synthesis, presence of DNA can be visually verified for each electrode. Blank electrodes are intentional to provide contrast.

Additional QC can be done via PCR. This is done on test pools that run alongside customer orders.
Quality control of oligo pools

- Oligo pool product amplification via universal PCR confirms the presence of 80, 90, 100, 110, 120, and 130 bp oligonucleotides synthesized on one 12k Microarray.

- Any set of sequences can be written on the chip as long as amplification primers are included.

- Once a pool has been generated, a large supply of oligos can be subsequently generated by PCR amplification.
Oligo pool stability study

- 110mer, 12K Oligo Pools – same file
- Spanned 8 weeks using different reagents, machines, chip lots, etc.
- Data provided by customer using NGS
- Error rates range from 0.43% to 0.73%

<table>
<thead>
<tr>
<th>chip</th>
<th>% perfect</th>
<th>22mer % perfect</th>
<th>70% fold Difference</th>
<th>90% fold difference</th>
<th>% Recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>65.8</td>
<td>91.3</td>
<td>1.7</td>
<td>2.6</td>
<td>99.3</td>
</tr>
<tr>
<td>2</td>
<td>70.8</td>
<td>92.7</td>
<td>1.6</td>
<td>2.3</td>
<td>99.3</td>
</tr>
<tr>
<td>3</td>
<td>63.4</td>
<td>91.2</td>
<td>1.7</td>
<td>2.7</td>
<td>99.3</td>
</tr>
<tr>
<td>4</td>
<td>65.9</td>
<td>90.0</td>
<td>1.4</td>
<td>2.0</td>
<td>100.0</td>
</tr>
<tr>
<td>5</td>
<td>58.2</td>
<td>89.1</td>
<td>1.4</td>
<td>2.0</td>
<td>99.3</td>
</tr>
<tr>
<td>6</td>
<td>66.7</td>
<td>92.3</td>
<td>1.5</td>
<td>2.2</td>
<td>99.3</td>
</tr>
<tr>
<td>7</td>
<td>64.0</td>
<td>91.2</td>
<td>1.5</td>
<td>2.0</td>
<td>99.3</td>
</tr>
<tr>
<td>8</td>
<td>55.6</td>
<td>89.3</td>
<td>1.5</td>
<td>2.1</td>
<td>99.3</td>
</tr>
</tbody>
</table>
Distribution case study

Case Study of Customer Submitted Sequences

- Customer ordered 12,000 125mer oligo pool from CustomArray
- Using our proprietary CMOS semi-conductor array synthesis platform, we performed the synthesis and delivered the product within 7 days
- Post synthesis, we minimally amplified the oligo pool and performed NGS using an Illumina Hi-Seq
CONTENTS

01 Oligo synthesis technology

02 Design of oligos for application needs

03 Applications using oligo pools
First things first, amplification

Oligo pools generally need to be amplified as a first step

There are 3 main reasons:
- Purification
- Low initial copy numbers
- QC

All oligo synthesis suffers from a step-wise truncation every time a base is added.

Proportion of full-length oligonucleotides among probes of different length synthesized with 99% step-wise efficiency.
PCR amplification

- 1st cycle of PCR converts ssDNA into dsDNA.
- Subsequent cycles only amplify full-length copies that include 5' priming sequence.

Priming sequences can be universal to allow all oligos to be amplified by a single pair of primers or a pool can be subdivided into an arbitrary number of sub-pools, each with an arbitrary number of oligos, by using different priming sequences.
CONTENTS

01 Oligo synthesis technology

02 Design of oligos for application needs

03 Applications using oligo pools
What are oligo pools used for?

- Genome editing libraries
  - CRISPR gRNA screening libraries
  - shRNA screening libraries
- Targeted sequencing
  - Hybrid-capture
  - MIP style
- Mutagenesis libraries
- OligoFish (Merfish)
  - In situ hybridization applications
- DNA data storage
- MPRA (Massively Parallel Reporter Assay)
CRISPR gRNA libraries

Many available CRISPR libraries were derived from oligos originally made using CustomArray technology.
Gene variant libraries

- Synthesize thousands of variants at one time to identify structural and functional residues and to optimize protein function

- Ideal for protein engineering, industrial enzyme development, and metabolic engineering

- Types of gene variant libraries:
  - Site-directed mutagenesis
  - Site-saturation mutagenesis
  - Saturation scanning mutagenesis
  - Combinatorial mutagenesis
Target enrichment: bait and capture

• Capture the targeted sequence using Biotinylated-RNA or DNA bait molecules in solution instead of DNA fixed to a surface.

• Benefits
  • Very easy to generate, everything in solution phase = higher efficiency
  • Oligo pools can easily generate these Biotin-RNA or DNA bait molecules.

  Oligos cleaved from array, Contain priming sequences for PCR
  During PCR amplification, RNA transcription sequence integrated into dsDNA
  Transcribe RNA with biotin labeled nucleotides, generating biotinylated RNA Baits.
  RNA Baits are now ready to be used for Target Enrichment
DNA data storage

According to leading manufacturer’s of digital data mediums, the world’s production capacity of traditional memory devices cannot keep pace with the increase in storage demand.

Using DNA as a data storage medium is an example of looking to nature for technical solutions. DNA serves this function in the natural world and has some strong advantages. DNA is relatively stable compared to current digital data storage devices and is far more dense in its information capacity.

While these are two fun examples that CustomArray has contributed oligos for, there may be a strong case for using DNA as an archival storage medium.
GenScript’s oligo pool service

✓ **Maximum screening efficiency with >99% sequence coverage rate**
  • Our integrated platform can deliver every sequence in your order.

✓ **Low batch variations between oligo pools**
  • More confidence in your results when using multiple oligo pool batches.

✓ **Flexibility for your application**
  • Two chip sizes to create any pool size to meet your experimental needs.

✓ **No sequence restrictions or minimum order required**

✓ **Industry-leading turnaround time**, delivery as fast as 5 business days
Thank you!

For questions, please visit: [https://www.genscript.com/precise-synthetic-oligo-pools.html](https://www.genscript.com/precise-synthetic-oligo-pools.html)

or email: [kimberlya@genscript.com](mailto:kimberlya@genscript.com) [oligo@genscript.com](mailto:oligo@genscript.com)