Peptide Design Strategy: Basics, Optimization, and Application

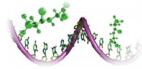
Tiffany Gupton Campolongo, Ph.D.

Presentation overview

Why design custom peptides?

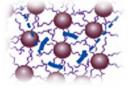
Applications of custom peptides

Structural Biology NMR • Protein-protein interactions • Enzyme assays


Drug Discovery

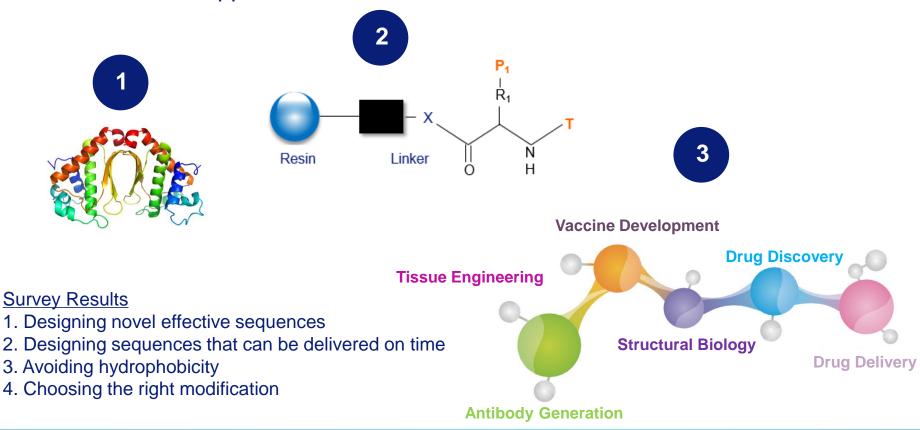
Antimicrobials, cancer (GPCR agonists) • diabetes (GIP and GLP-1 agonists) • Neurodegenerative disease (beta amyloid inhbitors)

Vaccine Development HIV • Cancer • Influenza • HPV


Drug Delivery siRNA delivery

Antibody Generation Phosphospecific antibodies • Non-commerically available antibodies

Tissue Engineering Hydrogels • Stem cells • Wound healing



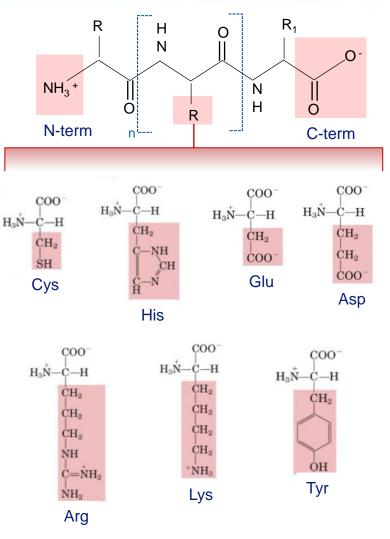
Why design custom peptides?

Design considerations are dependent on:

- 1. Biochemistry
- 2. Chemical process of peptide synthesis
- 3. Application

Peptide Design Basics

Peptide design basics: charge



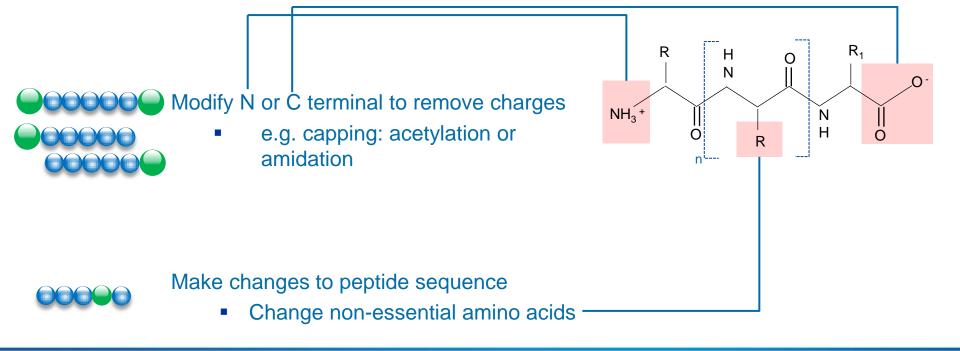
• Charge influences:

- Solubility
- Peptide activity
- Attraction to contaminants
- Charge is dependent on ionizable groups:
 - N-term amine, C-term carboxyl
 - R-groups: Asp, Glu, His, Cys, Tyr, Lys, Arg

• Key solubility relationship: pH/pl

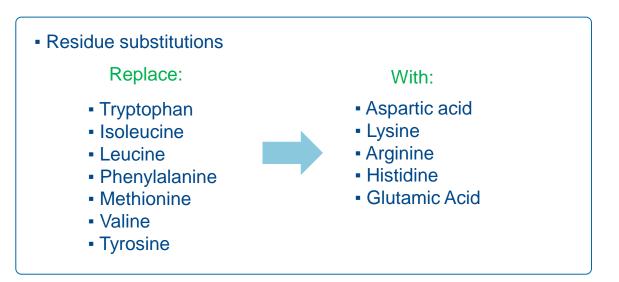
- pH = pI: minimal solubility, precipitation
- pH < pI: net positive charge
- pH > pI: net negative charge
- Key peptide activity relationship
 - N or C-term charges
- Key contamination relationships
 - Lys, His, Arg bind TFA
 - Lys, Arg bind water molecules
 - Tyr, Glu bind protective groups

Peptide design basics: charge


Calculate net charge or pl

- By hand:
 - http://www.genscript.com/amino_acid_structure.html

Using the net peptide calculator:


https://www.genscript.com/ssl-bin/site2/peptide_calculation.cgi

Peptide design basics: hydrophobicity

- Hydrophobic peptides are
 - >5 AA long
 - containing >50% hydrophobic amino acids
- Avoid hydrophobicity by replacing non-essential hydrophobic amino acids with charged or polar residues.

- **Process:** Custom peptide is tested in multiple solvents at varying pH
- **Deliverable:** Custom solubility report

Solubility testing service

Price: Free upon request

	Solvent ¹	pH Value	Results ^{1,2} (Dissolvde or Undissolved)	Highest Gross Peptide Concentation		
	ultrapure water	N/A	Dissolved	10 mg/ml		
Type1	0.1% acetic acid solution	N/A	N/A	N/A		
	3% ammonia water	N/A	N/A	N/A		
	0.1 M PBS*	7.40	Dissolved	10 mg/ml		

Peptide Solubility Test Report

Learn more at: http://www.genscript.com/peptide_solubility_testing.html

Request your solubility test via our instant online quotation system:

Peptide Synthesis Peptide Services >

Get a Quote Now

Via Secured Online Quo

Make Research Easy

Guaranteed TFA removal service

- **Process:** TFA is exchanged for another salt via proprietary counter-ion exchange protocol
- **Deliverable:** TFA content report

Service type

Guaranteed

Standard

TFA Removal Packages

Final TFA counterion %

formate

< 0.5 %

TEA accentarian 0/ not guaranteed

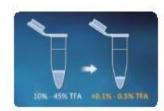
Stanuaru	TFA counterion % not guaranteed	1	

Learn more at: http://www.genscript.com/tfa_removal_service.html

HCI

< 0.1 %

Recommended for:

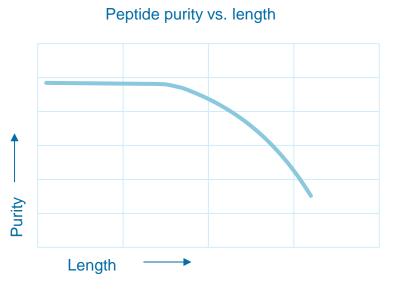

- Peptides that will be used in cellular assays
- Peptides that will be used as APIs or in manufactured products
- Hydrophilic peptides containing numerous basic residues

Request your solubility test via our instant online guotation system:

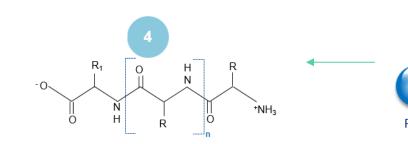
acetate

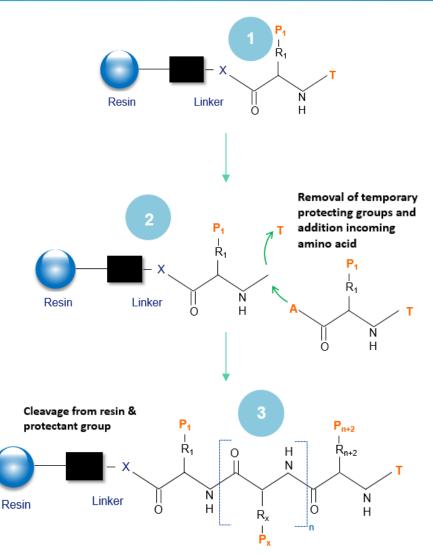
< 0.5 %

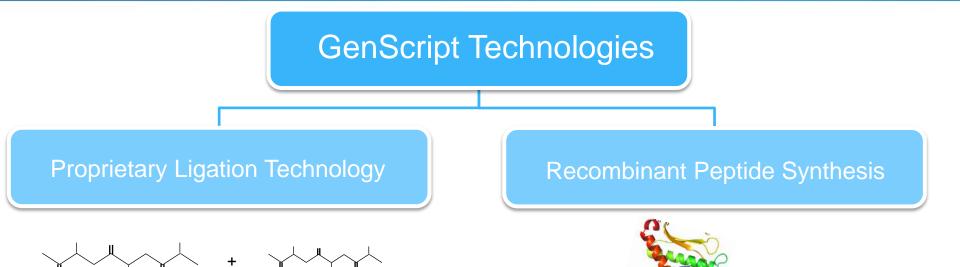
Peptide Services Peptide Synthesis



Get a Quote Now


Via Secured Online Quotati


Peptide design basics: length



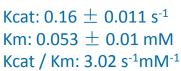
Optimal Peptide length: 15 AA

Long peptide synthesis technologies

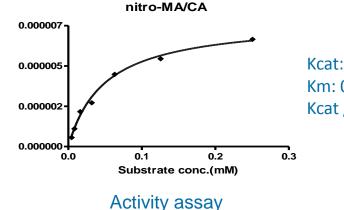
- Couples smaller peptides together to make larger ones
- For long peptides requiring modifications, non-natural amino acids

Learn more at: http://www.genscript.com/peptide_tech.htm

- Powered by recombinant protein expression
- For peptides longer than 150 AA


Learn more at: http://www.genscript.com/recombinant_pep.html

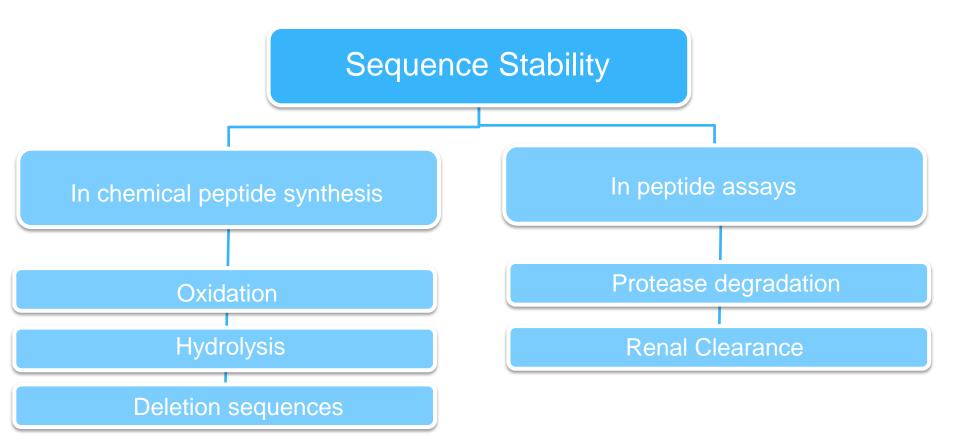
Case study: long peptide synthesis


About the sequence:

Human T-cell Leukemia Virus 1 Protease (HTLV PR), a 126 amino acid sequence having complex secondary structure.

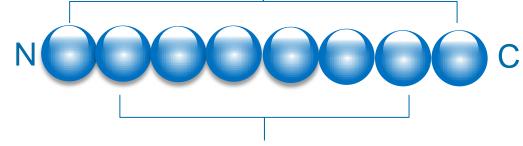
Peptide structure

Design by application: purity selection


Peptide Grade	Purity	Application
Immunograde	70%	 ELISA testing Peptide arrays Antigens for polyclonal antibody production or affinity purification
Biochemistry Grade	85%	 NMR studies Epitope mapping Phosphorylation studies Peptide blocking studies for Western Blot Cell attachment studies
High Purity Grade	95%	 SAR studies Quantitative receptor-ligand interactions studies Quantitative blocking and competitive inhibition studies Quantitative phosphorylation studies Quantitative proteolysis studies In vitro bioassays In vitro studies
High Purity Grade	98%	 Crystallography cGMP peptides for drug studies Cosmetic peptides for cosmeceuticals Clinical trials

http://www.genscript.com/recommended_peptide_purity.html

Advanced Design Strategy


In peptide synthesis

Design Constraint	Susceptible amino acids & Sequence	Strategies to increase stability
Cyclization	Asp-GlyN-terminal Glu	Substitute Asp with other amino acidsAcetylate N-terminal Glu
Secondary structure formation	Multiple Glu, lle, Leu, Phe, Thr, Tyr, Val	 Asp for Glu Ser for Thr Pro or Gly every third residue
Oxidation	CysMet	Cysteine with SerineMethionine with Norleucine
Hydrolysis	 Asp-Gly Asp-Pro Asp-Ser 	Substitute Asp with other amino acids
Sequence deletions	Multiple adjacent Ser	Substitute Ser with other amino acids

Protease/peptidase degradation

- **Types of proteases:** exopeptidases, (e.g. aminopeptidases, carboxypeptidases)
- N-terminal residues correlation:
 - Longer half-life: Met, Ser, Ala, Thr, Val, or Gly
 - Shorter half-life: Phe, Leu, Asp, Lys, or Arg

- **Types of proteases:** endopeptidases (e.g. trypsin, chymotrypsin, pepsin, elastase)
- Susceptible domains: Pro, Glu, Ser, and Thr rich

http://web.expasy.org/peptide_cutter/

Protease/peptidase degradation

- Strategies to reduce degradation
 - Cyclization
 - Acetylation
 - Amidation
 - D-amino acid replacement
 - Peptoids
 - Hydrocarbon stapling

Case study: β-amino acid incorporation

Advanced search

nature biotechnology

Home | Current issue | News & comment | Research | Archive V | Authors & referees V | About the journal V

Backbone modification of a polypeptide drug alters duration of action *in vivo*

Ross W Cheloha, Akira Maeda, Thomas Dean, Thomas J Gardella & Samuel H Gellman

Nature Biotechnology 32, 653–655 (2014) | doi:10.1038/nbt.2920 Received 13 December 2013 | Accepted 05 May 2014 | Published online 15 June 2014

Abstract

Systematic modification of the backbone of bioactive polypeptides through β -amino acid residue incorporation could provide a strategy for generating molecules with improved dring proherties, but include a strategy for the find on the strategy for the strateg

The Design:

- Incorporated β-residues into parathyroid hormone receptor (PTH) - every fourth residue
 - Incorporates CH₂ residues into backbone, but maintains native sequence sidechains
 - Successfully mimics α-helix

NLGKWLNSMERVEWLRKKLQDVHNF

The Test:

- 6 PTH mimetics were compared to native PTH using a PTHR1 signaling assays
 - Tested in HEK293 cells expressing PTHR1 and rats
 - Monitored cGMP or Ca2⁺ levels

The Result:

- PTH mimetic was considerably more potent that native PTH, presumably due to increased stability and half-life.
 - Raised calcium levels higher
 - Persisted longer in vivo

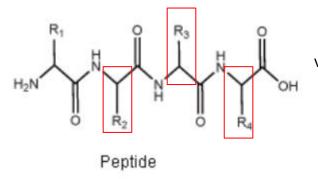
Case studies: D-amino acid replacement

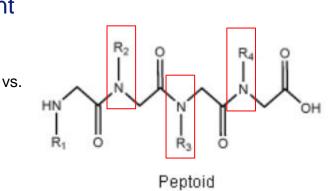
Replacement of select residues

- Vasopressin:
 - Normal half-life: 10–35 min
 - Half-life with single L-Arg to D-Arg change: 3.7 hrs

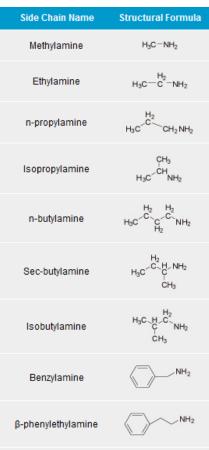
Replacement of all residues (Mirror image peptides)

- Antiarrhythimic Rotigapeptide
- HIV (PIE12-trimer) Navigen
- Ebola D-peptide inhibitors Navigen


Peptide Modifications


Over 300 modifications; Free amidation and acetylation
 Includes Biotinylation, FITC, PEGylation, methylation, disulfide bonds
 KLH, BSA, OVA conjugations

http://www.genscript.com/peptide_modification.html


Peptoid service

- Structure: R-groups are attached to nitrogen atoms instead of α-carbon (called poly-N-substituted glycines)
- Advantage: Increased stability
 - Protease resistant
 - Denaturation resistant

- Modifications: acetylation, amidation, Biotin, FAM, FITC, TMR labeling
- 20 different residues available

Renal Clearance

- Hydrophilic peptides <25 kDa are susceptible to rapid filtration through the glomeruli of the kidney
- Peptides not easily reabsorbed through the renal tubule

Strategy to decrease renal clearance

- Conjugation to macromolecules or polymers:
 - Polyethylene glycol (PEG)
 - Polysialic acid (PSA)
 - Hydroxyethylstarch (HES)
 - Bovine serum album (BSA)

Peptide Modifications

- Over 300 modifications; Free amidation and acetylation
- Includes Biotinylation , FITC, PEGylation, methylation, disulfide bonds
- KLH, BSA, OVA conjugations

http://www.genscript.com/peptide_modification.html

Case study: stapled peptides

The Design:

- α-helix stabilized by the incorporation of a hydrocarbon
 - Called ATSP-7041
 - Designed to inhibit p53 inhibitors, MDMX and MDM2

Stapled α -helical peptide drug development: A potent dual inhibitor of MDM2 and MDMX for p53-dependent cancer therapy

Yong S. Chang^{+1,2}, Bradford Graves^{b,1}, Vincent Guerlavais^a, Christian Tovar^b, Kathryn Packman^b, Kwong-Him To^b, Karen A. Olson^{*}, Kamala Kesavan^{*}, Pranoti Gangurde^{*}, Aditi Mukherjee^{*}, Theresa Bake^{*}, Krzysztof Darlak^{*}, Carl Elkin^{*}, Zoran Filipovic^b, Farooq Z. Qureshi^{*}, Hongliang Cai^{*}, Pamela Berry^b, Eric Feyfant^{*}, Xiangguo E. Shi^{*}, James Horstick^{*}, D. Allen Annis^{*}, Anthony M. Manning^{*}, Nader Fotouh^{*}, Huw Nash^{*}, Lyubomir T. Vassilev^{b*}, and Tomi K. Sawyer^{*,d}

Alleron Therapeutics, Inc., Cambridge, MA 02139; and *Roche Research Center, Hoffmann-La Roche, Inc., Nutley, NJ 07110

titited* by Robert H. Grubbs, California Institute of Technology, Pasadena, CA, and approved July 12, 2013 (received for review February 17, 2013)

Stapled «-helical peptides have emerged as a promising new modality for a wide range of therapeutic targets. Here, we report a potent and selective dual inhibitor of MDM2 and MDMX, ATSP-2041, which effectively activates the p53 pathway in tumoes in vitro and in vivo. Specifically, ATSP-2041 binds both MDM2 and M MX with nanow for affire test, shr is submit romolar cellular ties for vince in the proce of tums, deer test by a cellular test. each unable to compensate for the loss of the other, and they regulate nonoverlapping functions of p53 (4, 6).

The Test:

- ATSP-7041 efficacy was compared to small molecule MDM2 inhibitors
 - Tested in cancer cells and xenograft models
 - Monitored cell cycle arrest, apoptosis and tumor size

The Result:

 ATSP-7041 inhibited MDMX and MDM2 interactions with p53 interaction, causing the re-activation of p53 to induce apoptosis

Case study: Dithiol amino acid incorporation

nature chemistry

ARTICLES PUBLISHED ONLINE: 31 AUGUST 2014 | DOI: 10.1038/NCHEM.2043

Dithiol amino acids can structurally shape and enhance the ligand-binding properties of polypeptides

Shiyu Chen¹, Ranganath Gopalakrishnan¹, Tifany Schaer², Fabrice Marger², Ruud Hovius¹, Daniel Bertrand², Florence Pojer³ and Christian Heinis¹*

The disu	lfide bon	ds that	form bet	ween tw	o cyste	ine resi	dues are	import	ant in d	efining	and rigi	difying	the s	structury	s of
p/ teins	r∕d pept∕	Ves. In	olyper	des co	aining	'nultip/	cystei	resid	s, dis	Vide is	neriza	n cr	lead	/ \ mu/	le
/ ucts	h di	nt /	gic	tivit	Her	ve d	ibe /	dev	nen/	a d	l a/	\ a	Dt/	\ h ∕	'n

The Design:

- Designed a novel amino acid containing 2 sulfhydryl groups
 - Mimics cysteine
 - Capable of forming cyclic and branched secondary structures

The Test:

 Replaced adjacent cysteines in a serine protease inhibitor and nicotinic acetylcholine receptor inhibitor with dithiol amino acids

The Result:

- Dithiol amino acids enhanced peptide activity
 - Serine protease inhibitor and nicotinic acetylcholine receptor inhibitor activities increased by 40 and 7.6-fold, respectively

Design strategy summary

	Design considerations	Strategies
Basic	Charge	CappingNon-essential amino acids replacement
	Hydrophobicity	Residue substitutions with charged or polar residues
	Length	 Design peptides less than 50 AA long if possible Ligation technology or recombinant peptide synthesis
	Purity	Use recommended peptide purity chart
Advanced	Stability	 Unnatural amino acid incorporation Peptoids Hydrocarbon stapling
	Secondary structure	 Unnatural amino acid incorporation Cyclization Disulfide bridge incorporation

Service selection/resource summary

	Services
Long Peptide Synthesis	 Ligation technology (Chemical protein synthesis) Recombinant peptide synthesis
Peptide Stability	 Capping (free acetylation and amidation) Peptoid synthesis Unnatural amino acid modifications Macromolecule/polymer conjugations Cyclization, disulfide bonds Free argon shield packaging
Contamination	Guaranteed TFA Removal Service
Solubility	Free solubility testing
Resources	 Webinar: Avoiding peptide assay failure: hidden problems and solutions Webinar: Protein or peptide antigen: choosing the optimal immunogen for antibody production Peptide property calculator Amino acid chart property chart Recommended peptide purity chart Peptide solubility guidelines

Thank you for your participation We wish you all success in your research **Email me: Tiffany.Campolongo@GenScript.com**

Register for other webinars in the GenScript Webinar Series or download past webinars at @ <u>http://www.genscript.com/webinars.html</u>

Fusion tags for recombinant soluble protein production in *E. coli* – Keshav Vasanthavada December 3, 2014/ 8:00 am & 2:00 pm EST

Avoiding peptide assay failure: hidden problems and solutions- *Tiffany Campolongo, Ph.D* On demand

Protein or peptide antigen: choosing the optimal immunogen for antibody production- *Liyan Pang, Ph.D On demand*