Recombinant Protein Expression & Purification -- Challenges & Solutions

Liyan Pang, Ph.D.

liyan.pang@genscript.com

Table of Contents

Challenges in Protein Expression

- Soluble expression
- Correct conformation
 - Disulfide bond
 - Chaperonins
 - Refolding
- Production efficiency
- Purity
- Difficult-to-express proteins
 - Membrane protein
 - Toxic protein
 - Easy-to-degrade protein

Protein Expression Impacting Factors

- Sequence
- Expression system
 - Bacterial
 - Yeast
 - Insect
 - Mammalian
- Vector
 - Promoter
 - Tag
- Host strain
- Expression conditions
 - Medium component
 - Temperature
 - Inducer concentration & time
 - Inoculation volume

Protein Expression Common Questions

Expression Systems

Bacteria

E. coli 1. "Work horse" 2. Well established 3. High expression 4. Simple genetics 5. Easy scale up 6. Speed

- 0. Spece
- 7. Costs
- 8. Equipment

Insect

Sf9, Sf21, S2, High-5

1. PTMs

2. Soluble proteins

3. High expressers

Yeast

S. cerevisieae P. pastoris

1. PTMs

- 2. Soluble proteins
- 3. High expresser

Mammalian

CHO, HEK, COS

- 1. PTMs
- 2. Soluble proteins
- 3. Low expresser
- 4. Expensive

Cell Free

In vitro

- 1. Expensive
- 2. Not reproducible
- 3. Scalability issues

Make Research Easy

Before Embarking on a Protein Expression Project 6

Which Expression System to Choose?

Factors to Consider:

- Protein property
 - MW
 - Disulfide bonds
 - Post-translational modifications
 - Homogeneity
- Intended applications
 - Structural biology
 - Functional assays
 - Therapeutic protein/vaccines
 - Antigens for Ab production
 - Protein-protein interactions
- Yield
- Cost

Expression System Selection

Expression System	Pros	Cons	Intended Applications	
<u>Bacterial</u>	 Relatively inexpensive Simple genetics Easy to manipulate Easy scale up Fast expression 	 Lack of efficient post- translational modifications Codon usage issues Inclusion bodies Low yield and activity for some eukaryotic proteins Difficult to express higher MW proteins 	 <u>Structural biology</u> <u>Functional assays</u> 	
<u>Yeast</u>	 Diverse post-translational modifications Low cost of culture media Industry-scale fermentation 	 Improper glycosylation Excessive glycosylation 	 <u>Antigen production</u> Protein-protein interaction (Besterial & Yeast) 	
<u>Insect</u>	 Good secretion Post translational modifications resemble mammalian system Suitable for toxic gene products 	 Long production time Relative high media costs 	 (Bacterial & Yeast expression systems recommended) Therapeutic protein (Yeast & Mammalian expression systems recommended) 	
<u>Mammalian</u>	 Comprehensive post- translational modifications Excellent method for the production of bioactive proteins 	 Long production time High media costs Protein yields relatively lower 		

From sequence to purified protein - gene synthesis included!

Expression System	Deliverables	Timeline	Price
<u>BacPower™</u>	3mg purified protein guaranteed	6 -8 weeks	Staring from \$2,200
InsectPower™	1mg purified protein guaranteed	8 -10 weeks	Staring from \$3,950
<u>MamPower™</u>	3mg purified recombinant protein or 50mg purified antibody guaranteed	8 -12 weeks	Staring from \$8,499
<u>YeastHigh™</u>	Customizable production up to 2000L	8 -10 weeks	Quote

PROTential[™] - **Expression Evaluation & Optimization**

Eliminate the guesswork from your protein production work

- Evaluate whether your target protein expresses in your chosen system
- Identify the best expression system for your target protein
 - PROTential[™] Standard packages
 - Before scale-up protein production, to avoid waste on your time & valuable resources
- Optimize your protein expression
 - PROTential[™] Silver & Gold packages
 - When challenges arise the most efficient & cost-effective way

One stop service at GenScript: gene synthesis → Subcloning →PROTential[™] → Scale up protein production

GenScript's Solution for Expression Optimization

PROTential^{TM -} Portfolios

Name	Service Type	Expression System(s)	Price	Timeline	Description	
Standard	Protein Expression Evaluation	E.coli (SC1653-B)	Starting from \$280	1-2 weeks	Test 1 condition for soluble expression in a customer chosen bacterial strain	
		Insect (SC1653-I)	Starting from \$400	3-4 weeks	Test 1 condition for soluble expression in Sf9, Sf21, S2 or Hi-5 cells	
		Mammalian (SC1653-M)	Starting from \$500	3-4 weeks	Test 1 condition for soluble expression in CHO or 293 cells	
		All 3 Systems (SC1653-3S)	Starting from \$950	3-4 weeks	Test soluble expression 1 condition/expression system (<i>E.coli</i> , Insect, Mammalian); total 3 systems	
Silver	Protein Expression Optimization	E.coli (SC1667)	Login to inquire	2-3 weeks	 Test 8 different conditions Optimize growth temperature, media components & inducer concentrations Identify the best expression condition with your chosen vector and bacterial strain 	
Gold	Protein Expression Optimization	<i>E.coli</i> (SC1668)	Login to inquire	4-8 weeks	 Test 48 different conditions Optimize growth temperatures, media components, inducer concentrations, promoters, host cell strains & fusion partners Robust, industry-first, high-throughput expression and solubility optimization matrix 	

Case Study- Protein Expression Optimization

- Challenges:
 - Pilot purification (final yield 1mg/L) ~ 28kDa protein;
 - The protein can be only purified from the soluble part
 - Large amount of protein with large scale fermentation (1000L) and purification is needed.
- Strategies:
 - 1. Expression improvement:
 - a. Promoter optimization
 - b. Strain optimization
 - c. pH optimization
 - d. Temperature and induction optimization
 - e. Inoculated quantity optimization
 - 2. Recovery rate improvement during purification Purification condition optimization

Strategy execution: HT expression testing

	1	2	3	4	5	6
А	X-1	X-2	X-3	X-4	X-5	X-6
В	X-7	X-8	X-9	X-10	X-11	X-12
С	X-13	X-14	X-15	X-16	X-17	X-18
D	X-19	X-20	X-21	X-22	X-23	X-24
Е	X-25	X-26	X-27	X-28	X-29	X-30
F	X-31	X-32	X-33	X-34	X-35	X-36
G	X-37	X-38	X-39	X-40	X-41	X-42
н	X-43	X-44	X-45	X-46	X-47	X-48
	Conditions X-1 to X-48					

Case Study- Protein Expression Optimization

12X as much protein expression yield as original

1 mg/L starting protocol

2 mg/L T7 promoter/induction condition optimization

5 mg/L phoA promoter/induction condition optimization

6 mg/L growth condition optimization (pH)

12 mg/L seeding density optimization

Table of Contents

Protein Expression as Inclusion Bodies

- What is an inclusion body?
 - When E.coli is transformed to manufacture large amounts of recombinant protein, the protein sometimes forms dense aggregates of insoluble misfolded proteins, known as inclusion bodies.

Benefit

- allow high protein concentrations
- protect sensitive proteins from proteolytic (enzymatic) degradation
- protect the cell from any toxic proteins
- Challenge
 - to solubilise and refold this protein into its correct 'active' form

E. coli expressing protein as inclusion bodies

Cell lysis and high speed centrifugation

Inclusion body preparation

Sucrose gradient/ Detergent washing

Pure inclusion bodies Mild solubilization without high concentration of Urea/GnHCl

Solubilized protein

Refolding and buffer exchange at high concentration

Refolded protein

Chromatographic purification

Pure bioactive protein

Protein Refolding Introduction

- All the information necessary for folding the peptide chain into its native structure is contained in the primary amino acid sequence of the peptide.
- The native form of a protein has the thermodynamically most stable structure.
- There are vastly too many different possible conformations for a protein to fold by a random search.
- A new view of protein folding suggested that there is no single route, but a large ensemble of structures follow a many dimensional funnel to its native structure.

GenScript's FoldArt[™] Technology Overview

- Evaluation of target proteins' biochemical and biophysical properties
- Refolding optimizations
 - Selection of particular refolding strategy based on protein's sequence and the structural properties.
 - Buffer screening: Solutions for the inclusion body will be diluted to 20 different refolding buffers to determine which parameters affect the refolding results.

Denaturant removal

Techniques: dilution, dialysis, diafiltration, gel filtration, and chromatography (ion exchange, size exclusion, and affinity)

Validation

Refolding results will be validated by SDS-PAGE, HPLC and/or functional assay.

Refolding Buffer

- Refolding conditions must be optimized for each individual protein.
- Important variables are:
 - buffer type
 - pH
 - ionic strength
 - Additives, often in combination (glycerol, redox reagents, saccharides, amino acids, metal ion, detergents, chaperones)

TM Over 95% of the inclusion bodies can be solubilized and refolded by our proprietary FoldArt protein refolding technology

Case Study: Protein Refolding

Human interleukin – 5: disulfide-bond linked homodimer as active form

Table of Contents

Protein Purification

- Flexible purification methods
 - Affinity column (GST, Ni-NTA, protein A/G/L resins, etc.)
 - Ion exchange
 - Size exclusion

Hydrophobic interaction chromatography (HIC)

Double Tag strategy for big protein isolation

Affinity Chromatography

Endotoxin Removal

What are endotoxins?

- Endotoxins, also known as lipopolysaccharides (LPS), are large molecules found in the outer membrane of Gram-negative bacteria, which elicit strong immune responses in animals.

Detection

- Gel clot method
- Chromogenic method
- Removal methods:
 - Polymyxin B (PMB) affinity based ToxinEraser[™] (L00338) by GenScript allows highly efficient removal of endotoxin down to 0.1 EU/ml
 - Size exclusion chromatography (SEC)
 - Ion exchange chromatography (IEC)

GenScript Endotoxin Removal Services: Endotoxin <= 1 EU/ug; <= 0.1 EU/ug; <= 0.01 EU/ug

	Protein 1	Protein 2	Protein 3
Volume of resins	ne of resins 3 ml		3 ml
Volume of sample 15 ml		15 ml	15ml
Initial endotoxin 500,000 - 2,000,000 EU/ml		> 40,000,000 EU/ml	> 40,000,000 EU/ml
Final concentration 2.2 mg/ml		1 mg/ml	0.8 mg/ml
Final endotoxin 64 – 128 EU/ml		20 – 40 EU/ml	12.5 – 25 EU/ml
Final endotoxin 0.029 –0.058 EU/µg		0.02 –0.04 EU/µg	0.016 – 0.032 EU/µg

Table of Contents

Difficult-to-Express Proteins

Membrane protein

Toxic protein

Prone-to-degrade protein

<u>Definition</u>: Membrane proteins are proteins that interact with biological membranes.

- Targets of over 50% of all modern medicinal drugs.
- 20-30% of all genes in most genomes encode membrane proteins.
- Expression
 - Insect cells or mammalian cells;
 - Budded baculovirus or virus-like particle;
 - Cell-free
- Purification
 - Detergent screen;
 - Phosphate lipid ;
 - Nano-disc;

Membrane Protein Expression Work Flow

- Deliver recombinant Baculovirus, or cell pastes, or prepared membrane protein to the customer.
- Deliver functional budded virus containing membrane protein to the customer.
- Provide high throughput screening of membrane proteins and deliver expression evaluation report to the customer.

Case Study: Membrane Protein

✤25 L expression of GPCR,

Expression Level: 30-40 mg/L

Deliver the cell pastes in 6 weeks.

WB analysis of the membrane preparation

- 1. Whole cell lysate of GPCR before sonication
- 2. Whole cell lysate of GPCR after sonication
- 3. Supernatant after centrifugation of cell lysate for 10 minutes at 8k rpm
- 4. Pellet after centrifugation of cell lysate for 10 minutes at 8k rpm
- 5. Supernatant after ultracentrifugation of cell lysate for 45 min at 42k rpm
- 6. Pellet after ultracentrifugation of cell lysate for 45 min at 42k rpm
- 7. Negative control: supernatant after centrifugation of Sf9 cell lysate for 10 minutes at 8k rpm
- 8. Negative control: pellet after centrifugation of Sf9 cell lysate for 10 minutes at 8k rpm Antibody: anti-His monoclonal-antibody (Genscript, Cat.No. A00186)

Toxic Protein Expression

- <u>Definition</u>: Toxic proteins defined here as proteins that cause cell death or severe cultivation and maintenance defects during the growth phase when their genes were introduced into E. coli strain.
 - Mostly due to leaking expression
 - ~80% protein growth and expression problems are caused by the toxicity of proteins
- Strategies in solving the problem
 - Promoter selection
 - Suppress basal expression from leaky inducible promoters
 - Tight control of plasmid copy numbers
 - Protein production as inactive (insoluble) forms

Case Study: Prone-to-Degrade Protein

- Inconsistency of measured concentration
- Trouble shooting:
 - Transfection methods
 - Cell lysis
 - Purification
- Challenge: DNase is only partially responsible for the protein degradation. This protein itself is proneto-degrade.
- Solutions:
 - Remove DNase
 - Add protease inhibitor to every step
 - Optimize buffer components
 - Add protein stabilizers
 - Lyophilization immediately after protein purification
 - Storage temperature

Table of Contents

Advantages of GenScript Protein Services

- Core in-house technologies for expression optimization & production efficiency.
- > OptimumGene[™] expression system specific codon optimization
- > BacPower[™] increase bacterial soluble expression
- ➤ FoldArtTM ensure appropriate protein refolding
- ➤ YeastHighTM high copy-number gene selection technique
- ➢ BacuVance[™] for protein secretion from baculovirus-infected insect cells
- MamPower[™] technology licensed from NRC for rapid recombinant protein production with high yield
- DoubleTag strategy for big protein isolation

Advantages of GenScript Protein Services

• One-stop service from sequence to purified proteins with large capacity.

Guaranteed Protein Expression Package

- 3 mg purified soluble protein from \$2,200
- Subcloning
- Transformation
- Expression
- Refolding

Large-scale Protein Production Services

- Bacterial fermentation up to 1,000 L
- Yeast fermentation up to 500 L
- · Baculovirus/insect cell production up to grams
- Mammalian cell production up to grams

Protein Expression and Purification Services

- Bacteria
- Yeast
- Baculovirus/insect cells
- Mammalian

Bioprocessing Services

- Mammalian protein expression services
- Stable cell line development & protein production

OptimumGene™ Gene Design Service

-Minimum 10-fold increase in protein express level

Advantages of GenScript Protein Services

- Flexible production scales
- Fast turn-around time (from sequence to purified protein in as little as 4 weeks)

Capacity:

Bacteria	Yeast	Baculovirus	Mammalian
1,000 L	500 L	100 L	500 L
Fermentor	Fermentor	Wave [™] Mixer	Wave [™] Mixer Sartorious bioreactor Hyclone SUB bioreactor

Variety of GenScript Protein Services

6 Protein Expression & Purification

Bacteria, Insect, Mammalian, Yeast, Customized protein services, Fermentation, Transient & Stable cell lines

6 Protein Expression Evaluation & Optimization

Small scale expression testing and optimization in bacterial, insect and mammalian expression systems

& Large Scale Protein Production

Upstream & Downstream Process development, fermentation, GLP-compliant Bioprocess Services

6 High Throughput Protein Variants

Largest high-throughput capacity in the industry, proprietary platforms, 30 days for 1,000 protein variants

other Protein Services

Endotoxin removal, codon optimization, custom purification, protein characterization, refolding

6 Chemical Protein Synthesis

Alternative method to produce high purity functional proteins for hard-to-express proteins

Structural Biology

CrystalPro[™] Gene-to-Structure Services, high purity protein preparation, crystal, co-crystal structure determination

GenScript's Experience in Protein Expression & Purification

GenScript has delivered over **5,000** proteins in four expression systems. Statistics showed **95%** success rate for all protein projects.

About GenScript

Thank you for your participation We wish you all success in your Research

Register for other webinars in the GenScript Webinar Series @ http://www.genscript.com/webinars.html

June 18, 2014/ 2:00 pm EST

Can CRISPR/Cas9 off-target genomic editing be avoided? Ways to improve target specificity - *Maxine Chen, Ph.D*

June 25, 2014/ 2:00 pm EST Building a Synthetic Eukaryotic Genome – Sc2.0 - *Leslie Mitchell, Ph.D., NYU Langone Medical Center*

Promo Code: BacPowerUP

- Free additional amount of protein from 3mg to 5mg for any BacPower[™] Guaranteed Packages

- Valid till 8/15/2014