Codon optimization: Why & how to design DNA sequences for optimal soluble protein expression

Rachel Speer, Ph.D.

Codon optimization: Why & how to design DNA sequences for optimal soluble protein expression

- (1) Why do codons matter?
- OptimumGene principles & performance
- (3) Case Studies
- How to get better protein expression

Protein Expression Overview

Select/Design the end product (amino acid sequence)

Choose expression system

Design expression clone (DNA construct)

Express the protein

Purify the protein

Characterize the protein

MGVHECPAWLWLLLSLLSLPLGLPVLGAPPRLIC...

Protein Expression Overview

Why do Codons Matter? The Facts

- Redundancy in the genetic code
- Synonymous mutations affect protein expression rates up to 1000-fold.
- Synonymous mutations can also alter protein conformation, PTM, stability, and function.

					Secon	d Letter					
		U		С		-	4	G	;		
	0	UUC	Phe Leu	UCU UCC UCA UCG	Ser	UAU UAC UAA UAG	Tyr Stop Stop	UGU UGC UGA UGG	Cys Stop Trp	⊃∪∢⊍	
1st	U	CUU CUC CUA CUG	Leu	CCU CCC CCA CCG	Pro	CAU CAC CAA CAG	His Gln	CGU CGC CGA CGG	Arg	⊃∪∢⊍	3rd
letter	A	AUU AUC AUA AUG	lle Met	ACU ACC ACA ACG	Thr	AAU AAC AAA AAG	Asn Lys	AGU AGC AGA AGG	Ser Arg	⊃∪∢ 	letter
	O	GUU GUC GUA GUG	Val	GCU GCC GCA GCG	Ala	GAU GAC GAA GAG	Asp Glu	GGU GGA GGG	Gly	⊃∪∢G	

Codon Optimization:

Introducing synonymous mutations that favor efficient soluble protein expression

What Codon Optimization is – and isn't

Codon Bias

Observations:

- Species-specific bias in codon use and tRNA abundance
- Heterologous protein expression is often inefficient

Theory:

Rare codons reduce protein expression

Solutions:

- Express tRNA to remove bias in the host cells
- Alter the gene to replace rare codons with preferred ones:
 - site-directed mutagenesis
 - de novo gene synthesis with codon optimization

Codon Optimization Significantly Increases Protein Expression Levels

Codon optimization can improve expression of human genes in *Escherichia coli*: A multi-gene study.

Burgess-Brown NA et al. Protein Expr Purif. May 2008; 59(1): 94-102

[1	Vative	•	Synthetic			Expression	Solubility
Gene Name	1	2	3	1	2	3	Syn vs Nat	Syn vs Nat
CBR1								A
CBR3								A
GMDS							A	A
HADH2							A	A
HSD1 7B2							A	
HSD17B4							A	A
MGC4172								
PECR							A	A
RETSDR2							A	
SPR								

- Targets shown improvement of expression and/or solubility with synthetic gene after codon optimization
 - 1. Total Cellular Protein
 - Soluble Fraction
 - 3. Eluted Fraction

Codon Adaptation is not the most important factor for protein yield

Coding-sequence determinants of gene expression in Escherichia coli. Kudla G, Murray AW, Tollervey D, Plotkin JB. *Science*. 2009 Apr 10;324(5924):255-8.

- 154 synthetic GFP genes with random synonymous mutations
- 250-fold variation in fluorescence
- 44% of variation explained by 5' mRNA free energy (nt −4 to +37)

The anti-Shine-Dalgarno sequence drives translational pausing and codon choice in bacteria. Li GW, Oh E, Weissman JS. *Nature*. 2012 Mar 28;484(7395):538-41.

- Variation in Translation Rate does not correlate with rare codon use
- •Orthogonal ribosomes with altered anti-SD sequences: pausing results from hybridization between 16s rRNA and SD-like sequences in mRNA

Many sequence features influence protein expression

2. mRNA processing and stability

- · cryptic splice sites
- · mRNA secondary structure
- stable free energy of mRNA

4. Protein folding

- codon context
- codon-anticodon interaction
- translation pause sites

1. Transcription

- cis-regulatory elements (TATA box, termination signal, protein binding sites, etc.)
- · chi sites
- polymerase slippage sites

- codon usage bias
- ribosomal binding sites (e.g. IRES)
- premature polyA sites

Evidence-Based Codon Optimization: OptimumGene

Transcriptional Efficacy:

- GC content
- · CpG dinucleotides content
- · Cryptic splicing sites
- Negative CpG islands

Translation Efficiency:

- · Codon usage bias
- GC content
- mRNA secondary structure
- Premature PolyA sites

Protein Refolding:

- Codon usage bias
- Interaction of codon and anti-codon

- · SD sequence
- TATA boxes
- Terminal signal
- RNA instability motif (ARE)
- Stable free energy of mRNA
- Internal chi sites and ribosomal binding sites
- Codon-context
- · RNA secondary structures

Flexibility to adjust the weight of different factors or add customized constraints:

- Filter out restriction sites
- Reduce similarity between library members
- Alternative codon tables / condition-specific codon preferences

GenScript has optimized over 50,000 sequences in all major expression systems.

Patented Bioinformatic Algorithm powers OptimumGene

Liu *et al.* **Method of sequence optimization for improved recombinant protein expression using a particle swarm optimization algorithm**. US Patent 8,326,547, issued December 4, 2012.

OptimumGene[™] Improves Protein Expression Better that Competitors' Optimization

Fig. 1: Expression Result of Protein α after Codon Optimization. The expression level of Protein α using GenScript's OptimumGeneTM Codon Optimization is **3** times more than that of competitor's.

Fig. 2: Expression Result of Protein β after Codon Optimization. The expression level of Protein β using GenScript's OptimumGeneTM Codon Optimization is **13** times more than that of competitor's.

We routinely test and improve our algorithm

Lane 1 2 3 4 5 6 7 8 9 10

Lane	1	2	3	4	5	6	7	8	9	10
Sequence	MW marker	Purified hIGF-1 (PC)	BL21 cell lysate (NC)	WT (non- optimized) hIGF-1	Opti-0	Opti-1	Opti-2	Opti-3	Opti-4	Opti-5
Yield (mg/L)				Not detectable	7.7	3.1	18.5	11.4	5.4	28.5

Hundreds of papers cite GenScript for codon-optimized gene synthesis

"Humanization and optimization of codon usage was performed (GenScript) owing to **poor expression of the original zebrafish lyn in HEK293 cells**."

"...IFP1.4 gene was de novo synthesized by **GenScript** Company, based on the available protein sequence. The DNA sequence was **optimized with proprietary OptimumGene algorithm (GenScript)**..."

"...The following genes were codon optimized and synthesized (Genscript):..."

Resources » Reference Databases » Citations Database

Case Study 1: Neurospora Circadian Clock

Non-optimal codon usage affects expression, structure and function of clock protein FRQ

Zhou M. et al. Nature. 2013 Mar;495 (7439); 111 – 5

Codon Optimization performed in only specific regions of the gene:

"...Optimized frq sequences (synthesized by Genscript) ...In the m1-frq construct, only the codons upstream of the predicted intron branch point were optimized as m-frq. For the m2-frq construct, only the codons downstream of the intron 3' end were optimized as m-frq..."

Case Study 2: Crystal Structure & PK/PD for Cancer Drug Discovery

Stereospecific targeting of MTH1 by (S)-crizotinib as nature anticancer strategy

Huber KV, et al. Nature. 2014 Apr 10;508(7495):222-7.

Codon-optimized gene synthesis from GenScript was used to express Nudt1 for enzymatic assays and crystallization studies.

Case Study 3: Antiviral Drug Discovery for Ebola Virus

High-throughput, luciferase-based reverse genetics systems for identifying inhibitors of Marburg and Ebola viruses.

Uebelhoer et al. Antiviral Res. 2014 Jun;106:86-94.

- Codon-optimized EBOV gene provided by GenScript
- Codon-optimized support plasmids increased signal 2000-fold

Case Study 4: Combinatorial Library for Human Genome Editing

A library of TAL effector nucleases spanning the human genome.

Kim Y, et al. Nat. Biotechnol. 31, 251-258 (2013).

•Codon Optimized Gene Synthesis from GenScript was used to

- 1. Limit sequence similarity
- 2. Exclude rare codons
- 3. Guarantee accuracy of highly-repeated sequences

Case Study 5: Metabolic Engineering

Substantial improvements in methyl ketone production in E. coli and insights on the pathway from in vitro studies.

Goh EB et al. Metab Eng. 2014 Sep 18;26C:67-76.

- •Codon Optimized Gene Synthesis from GenScript was used to
 - 1. improve metabolic pathway efficiency (↑substrate influx, ↓diversion)
 - 2. improve GC content of gene from *M. luteus*, whose genome is 73% GC

How to get codon-optimized genes

Online Tools to identify rare codons

- Rare Codon Analysis Tool
- Codon Frequency Tables

Request Free Codon Optimization using OptimumGene

Request Free Codon Optimization

Quick & easy online form

Review your Free Optimization Report

Helices in structure (all)									
Helix		ΔG (kcal/mol)	Lei	Position					
1	-4.7		5	.gc	64>6	58 ; 85<81			
2	-4.0		3 16>18; 42<40						
3	-3.12		3			21;38<36			
4	-2.1		2	69>70 : 76<75					
5	-2.1		2	24>25 ; 33<32					
6	-1.8	34	2	53>54 ; 59<58					
7	-1.8	34	2	43>44 ; 49<48					
Hairpins in structure (all)									
rian pins in structure (an)									
Hairp	in	∆G (kcal/mol)	Len	gth	Position			
1		3.10		10		24><33			
2		2.50		8		69><76			
3		1.50		7		53><59			
4		1.50		7		43><49			

Order Gene Synthesis for your Codon-Optimized Gene

Recommended Services for your needs:	Low Price	Fast Turnaround	High-Volume	Long Genes
Custom Gene Synthesis Cat No. SC1010	√ \$0.35/bp	√ 9 business days	No min / max	≤8 kb
Rush Gene Synthesis Cat No. SC1575	Request a quote	4 business days	No min / max	≤2 kb
GenPlus™ High-Throughput Gene Synthesis Cat No. SC 1645	\$0.23/bp	15 business days	≥25 genes	✓ ≤10 kb
GenPlus™ Economy Gene Synthesis Cat No. SC1681	\$0.23/bp	25 business days	No min / max	✓ ≤10 kb
GenBrick [™] Synthesis Cat No. SC1584	\$0.45/bp	23 business days	No min / max	8 - 15kb or more

GenScript Toolkit For Improving Protein Expression

Select/Design the end product (amino acid sequence)

Choose expression system

Design expression clone (DNA construct)

Express the protein

Purify the protein

Characterize the protein

GenPlus[™] high-throughput gene synthesis Gene Variant Library services

PROTential[™] protein expression evaluation service

Codon-Optimized Gene Synthesis

BacPower™

YeastHIGH™ FragPower™

MamPower™ Recombinant Antibody

InsectPower™

FoldArt™ Refolding ToxinEraser™ Endotoxin Removal

Protein Characterization Services

Select/Design the end product (amino acid sequence)

Choose expression system

Design expression clone (DNA construct)

Express the protein

Purify the protein

Characterize the protein

Mutant library for protein engineering?
Combinatorial Library?
Truncation Variants?

Gene variant libraries: design, construction, and research applications

Presented by: Rachel Speer, Ph.D.
Originally aired May 21st and June 18th, 2014

View now

Select/Design the end product (amino acid sequence)

Choose expression system

Design expression clone (DNA construct)

Express the protein

Purify the protein

Characterize the protein

- Pros and Cons of different expression hosts
- Techniques for protein re-folding, protection from rapid degradation

Recombinant protein expression & purification: challenges and solutions

Presented by: Liyan Pang, Ph.D.
Originally aired June 11th and June 12th, 2014

On Demand

View now

Select/Design the end product (amino acid sequence)

Choose expression system

Design expression clone (DNA construct)

Express the protein

Purify the protein

Characterize the protein

- Fusion partners/epitope tags
- e. coli strain, induction conditions, etc

Select/Design the end product (amino acid sequence)

Choose expression system

Design expression clone (DNA construct)

Express the protein

Purify the protein

Characterize the protein

maximizing purity and yield

GenScript – The most cited biology CRO

References

- Belfield EJ, Hughes RK, Tsesmetzis N, Naldrett MJ, Casey R **The gateway pDEST17 expression vector encodes a -1 ribosomal frameshifting sequence.** *Nucleic Acids Res.* 2007;35(4):1322-32.
- Chu D *et al.* **Translation elongation can control translation initiation on eukaryotic mRNAs**. *EMBO J.* 2014 Jan 7;33(1):21-34.
- Goh EB et al. Substantial improvements in methyl ketone production in E. coli and insights on the pathway from in vitro studies. *Metab Eng.* 2014 Sep 18;26C:67-76.
- Huber KV, et al. Stereospecific targeting of MTH1 by (S)-crizotinib as anticancer strategy. Nature. 2014 Apr 10;508(7495):222-7
- Kim Y, et al. A library of TAL effector nucleases spanning the human genome. *Nat. Biotechnol.* **31**, 251–258 (2013).
- Kramer G, Boehringer D, Ban N, Bukau B. **The ribosome as a platform for co-translational processing, folding and targeting of newly synthesized proteins.** *Nat Struct Mol Biol.* 2009;16:589–597.
- Kudla G, Murray AW, Tollervey D, Plotkin JB. **Coding-sequence determinants of gene expression in Escherichia coli.** *Science.* 2009 Apr 10;324(5924):255-8. Free Full Text
- Li GW, Oh E, Weissman JS. The anti-Shine-Dalgarno sequence drives translational pausing and codon choice in bacteria. *Nature*. 2012 Mar 28;484(7395):538-41. Free Full Text
- Mellitzer A. et al. Synergistic modular promoter and gene optimization to push cellulase secretion by Pichia pastoris beyond existing benchmarks. J. Biotechnol. (2014), http://dx.doi.org/10.1016/j.jbiotec.2014.08.035
- Plotkin JB, Kudla G. **Synonymous but not the same: the causes and consequences of codon bias.** *Nat Rev Genet.* 2011;12:32–42. Free Full Text
- Shine J, Dalgarno L. The 3'-terminal sequence of Escherichia coli 16S ribosomal RNA: complementarity to nonsense triplets and ribosome binding sites. *Proc. Natl Acad. Sci. USA* 1974;71:1342-1346. Free Full Text
- Uebelhoer et al. High-throughput, luciferase-based reverse genetics systems for identifying inhibitors of Marburg and Ebola viruses. *Antiviral Res.* 2014 Jun:106:86-94.
- Welch M et al. **Design parameters to control synthetic gene expression in Escherichia coli**. *PLoS One*. 2009 Sep 14;4(9):e7002. doi: 10.1371/journal.pone.0007002.

Thank you!

- Please complete the survey
- Questions/feedback: <u>rachel.speer@genscript.com</u>
- Webinar Archives: www.genscript.com/webinars.html
- Request codon optimization: gene@genscript.com