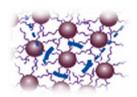
Examining the components of your peptide sample with AccuPep QC


Lauren Lu, Ph.D.
October 29, 2015, 9:00-10:00 AM EST

When do I need custom peptides?

Custom peptides play an important role in many research applications

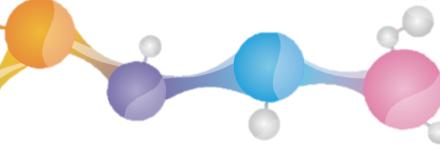
Tissue Engineering

Hydrogels • stem cells

wound healing

Drug Discovery

Antimicrobials• cancer • diabetes

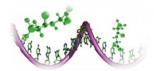

neurodegenerative diseases
 immunotherapy

Vaccine Development

HIV • cancer • influenza

HPV

Antibody Generation


Phospho-specific antibodies • non-commercially available antibodies

Structural biology

NMR • protein-protein interactions • enzyme assays

Drug Discovery siRNA

Common challenges with custom peptides

- Common issues that you might face
 - Unable to dissolve peptides with poor solubility
 - Improper dissolving way ruining peptide sample
 - Unknown contamination ruining your assay
 - Low experiment reproducibility from batch to batch
 - Non-reproducible results for quantitative experiments

How can these issues be addressed?

- For certain types of assays, additional testing is required to learn more about the contents of your peptide sample:
 - Appropriate solvents
 - Removal of TFA
 - The precise amount of net peptide
 - The presence of endotoxin
 - The water %
 - The pH value
 - The residual solvents
 - The identification of peptide impurities
 - •

Benefits of analyzing your peptide content

GenScript offers a comprehensive QC service, AccuPep+, to help you get the most out of your custom peptides

- Reduces experimental troubleshooting
- Increases experiment reliability
- Ensure reproducible results

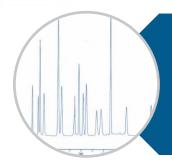
Features of the AccuPep+ Service

Quantification tests

- Amino Acid Analysis
- Peptide Content Analysis
- Counter-ion Quantification Analysis
- Moisture Content Analysis

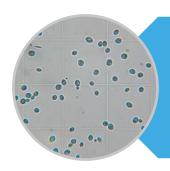
Toxicity Tests

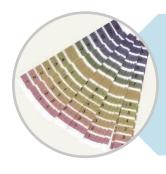
- TFA Removal and Analysis
- Endotoxin Analysis


Other tests

- Solubility Tests
- pH Test

www.genscript.com/accupep_quality.html

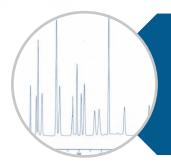

AccuPep+ service test options


Quantification Tests:

 Do I really know all the possible components in my peptide sample?

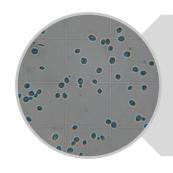
Toxicity Tests:

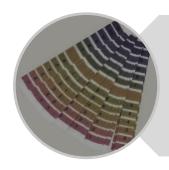
What could make my experiment fail?



Other Tests:

What else can I do to accelerate my experiments?


AccuPep+ service test options


Quantification Tests:

 Do I really know all the possible components in my peptide sample?

Toxicity Tests:

What could make my experiment fail?

Other Tests:

What else can I do to accelerate my experiments?

Quantification Tests: Methods

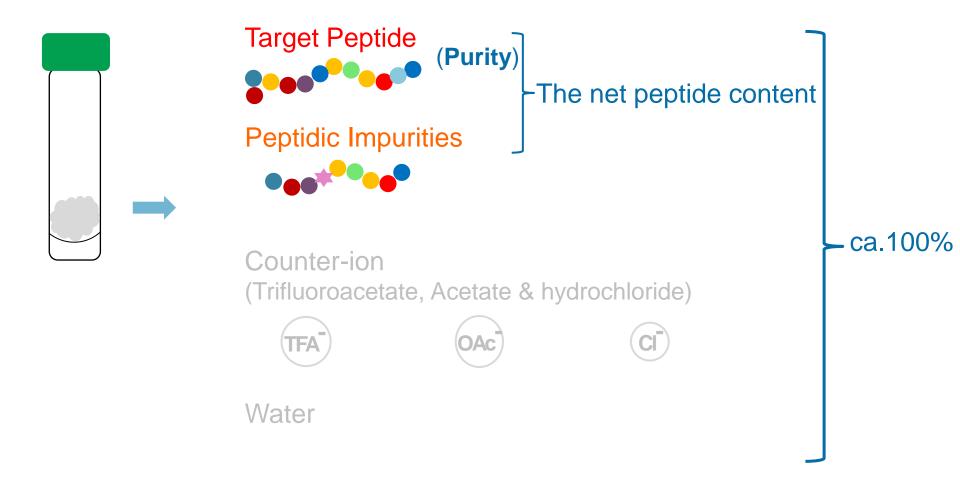
Components

Target Peptide

Peptide Impurities

Counter-ion (Trifluoroacetate, Acetate & hydrochloride)

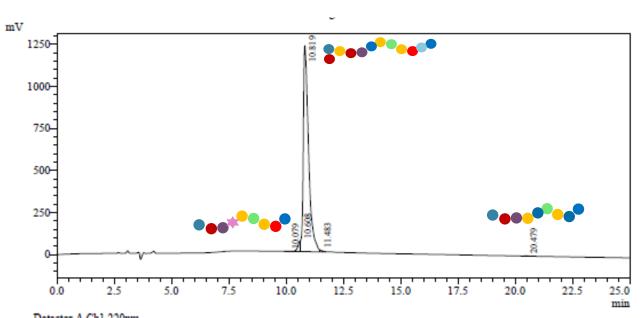
Water


Amino Acid Analysis; Peptide Content Analysis (Nitrogen Element Analysis); HPLC Analysis

Counter Ion Quantification Analysis (Ion chromatography)

Moisture Content Analysis (Karl Fischer coulometric titration)

How much peptide do I have?

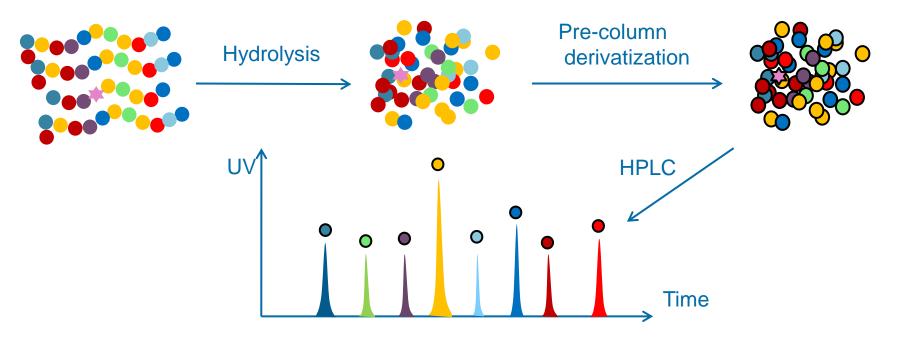


How is peptide purity measured?

◆ High performance liquid chromatography (HPLC) Purity

The ratio of peak area of target peptide in relation to all detected peak area

Peptide Purity: 97%


Detector A Ch Peak#	Ret. Time	Area	Height	Area %
1	10.079	12200	1255	0.061
2	10.608	441127	63265	2 201
3	10.819	19493777	1224629	97.257
4	11.483	83012	11085	0.414
5	20.479	13507	1763	0.067
Total		20043623	1301997	100.000

What is the amino acid composition of my peptide?

- Amino Acid Analysis (AAA) is ideal for:
 - Determining the amino acid composition
 - Determining the precise amount of net peptide in your sample

Protocol:

Example AAA report

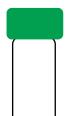
Peptide Sequence: VFNTRA

Amino acid (a.a.) residues	Theoretical a.a. number	The measured a.a. residues concentration (µmol/ml)	Measured a.a. number
Asp/Asn	1	0.1323	1.00
Glu/Gln			
Ser			
Gly			
His			
Arg	1	0.1308	1.00
Thr	1	0.1142	0.90
Ala	1	0.1245	1.00
Pro			
Tyr			
Val	1	0.1431	1.10
Met			
Cys			
lle			
Leu			
Phe	1	0.1269	1.00
Trp			
Lys			

Tips:

- 1. As and Gln are deaminated during hydrolysis to Asp and Glu.
- 2. Only highlighted a.a. residue is stable enough during hydrolysis to be used as for peptide content calculation.

Alternative way to determine the net peptide content


- Peptide Content Analysis: determines the precise amount of net peptide in the gross peptide sample
- Method
 - Nitrogen Element Analysis

Note: Given that the counter-ions (acetate, trifluoroacetate or hydrochloride) and the adsorbed water do not contain nitrogen, Nitrogen element analysis can be use for the net peptide content measurement.

How to calculate the net peptide

Delivered peptide

Delivered (Gross) Weight:10 mg

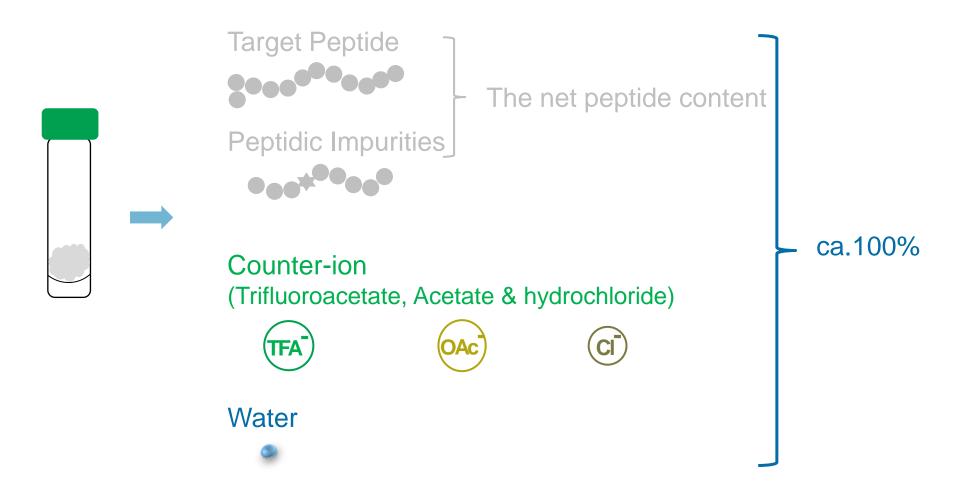
Purity: 97%

Peptide content: 40%

(AAA)

Net peptide weight:

10 mg * 40% = 4.0 mg

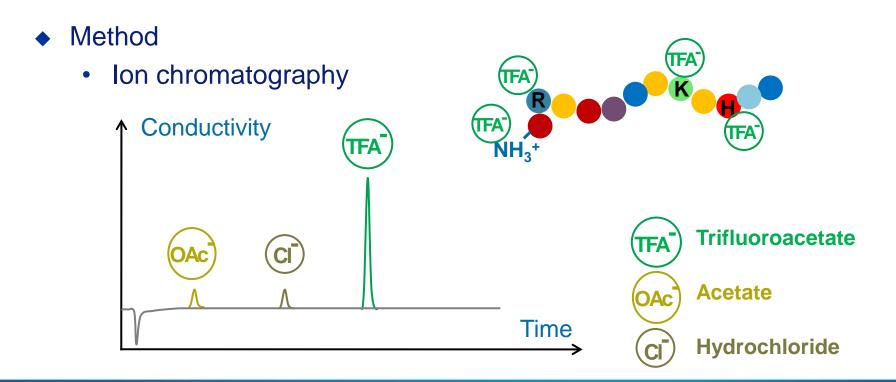

Exact amount of target peptide:

4.0 * 97% = 3.88 mg

With the purity and peptide content as determined by AAA, you can calculate the net peptide weight and exact amount of your peptide

Other constituents in your sample

Counter-Ion Types and Sources


- Common counter-ion types
 - Trifluoroacetate (main type for most delivered peptides)
 - Acetate/Formate/Hydrochloride

- Counter-ion sources
 - Peptide cleavage and purification
 - Counter-ion exchange

Counter Ion Quantification Analysis

- Counter Ion Quantification Analysis is useful for:
 - Cellular assays
 - Active pharmaceutical ingredients (APIs)
 - Manufactured products

How can I estimate the theoretical TFA amount?

Peptide molecular weight: 1500 Da

TFA molecular weight: 114 Da

Peptide (adducted with counter-ion) molecular weight: 1500+114*4 = 1956 Da

The estimated TFA % = 114*4/1956 = 23.3 %

Moisture Content Analysis

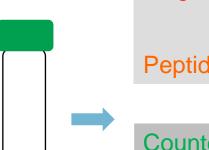
 Moisture Content Analysis is useful for hydrophilic peptides that will retain the most water.

- Method
 - Karl Fischer Coulometric Titration
 - The basis:

$$H_2O + I_2 + [RNH]SO_3CH_3 + 2RN \Leftrightarrow [RNH]SO_4CH_3 + 2[RNH]I$$

I₂ reacts quantitatively with H₂O while the iodine is generated directly in the electrolyte by electrochemical means.

The rigorously quantitative relationship between the electric charge and the amount of iodine generated is used for high-precision dispensing of the iodine.



Summary

Components

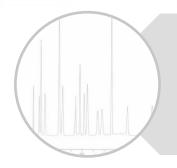
Quantification Methods

Target Peptide

Peptide Impurities

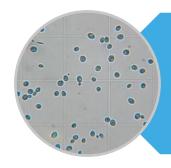
Counter-ion (Trifluoroacetate, Acetate & hydrochloride)

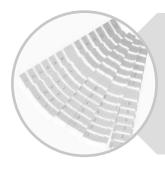
Water


Usually, 50-80%

Usually, 30-10%
Dependent on basic a.a. residue number

Usually < 10%, but could be particularly high for hydrophilic peptide


AccuPep+ service test options


Quantification Tests:

 Do I really know all the possible components in my peptide sample?

Toxicity Tests:

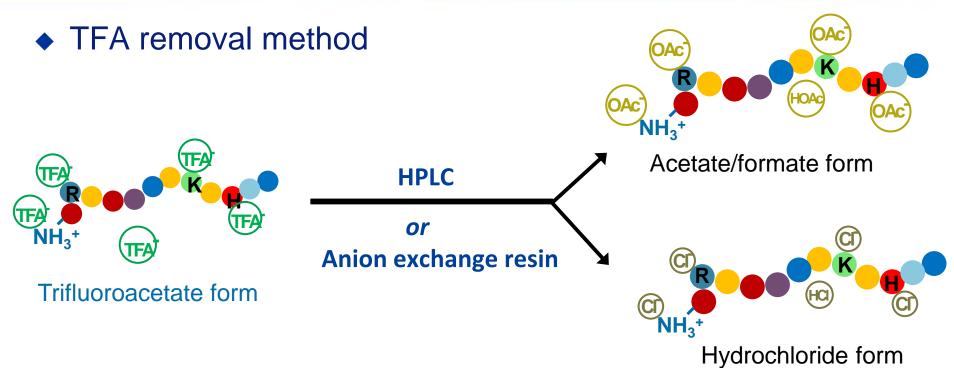
What could make my experiment fail?

Other Tests:

What else can I do to accelerate my experiments?

Toxicity test options

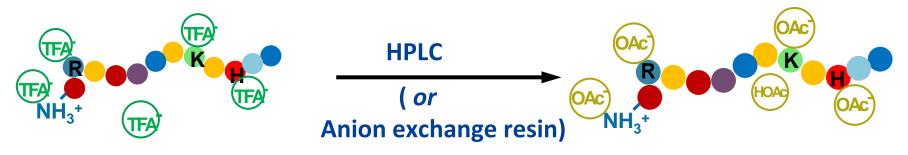
TFA removal and analysis


- TFA is a counter anion for normal peptides
- Trace amount of TFA can cause cytotoxicity in cell culture assays

Endotoxin Analysis

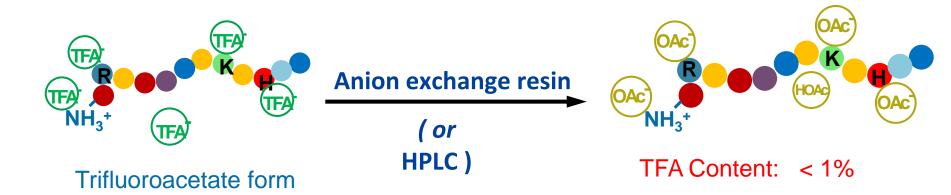
- Endotoxins are easily introduced into peptides during any process of peptide production.
- Small concentrations of endotoxin can decrease cell viability or cause immune response in cellular assays.

TFA Removal and Analysis



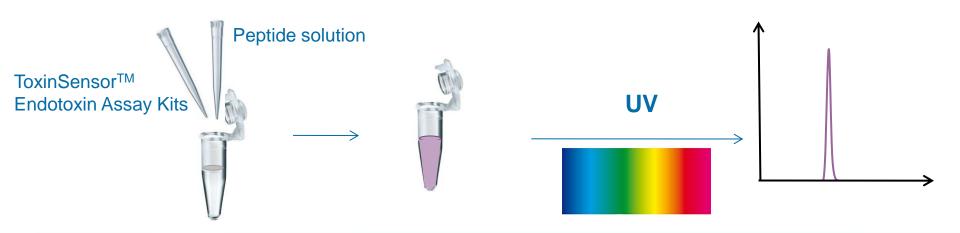
- How to choose counter-ion form (in the point view of production)
 - OAc Suitable for unstable amino acids, such as Cys, Met, Gln at N-terminus
 - Suitable for peptides with low solubility

Two Types of TFA Removal Services


Standard TFA Removal Service

Trifluoroacetate form

TFA Content: Undetermined, usually quater of the estimated - 1%


Guaranteed TFA Removal Service

Endotoxin Analysis

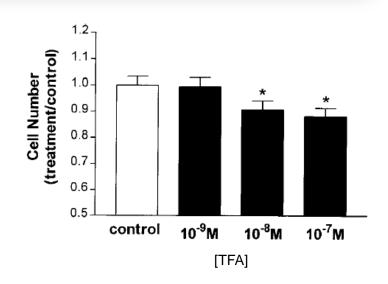
- Endotoxins (lipopolysaccharides)
 - Major components of the cell walls of gram-negative bacteria
 - Introduced into custom peptides during peptide production
- Method
 - Chromogenic Tachypleusamebocyte lysate or Limulus amebocyte lysate test
 - Guaranteed high-sensitivity: 0.005 EU/ml

Which service is best for me?

 A variety of applications benefit from TFA removal or endotoxin analysis:

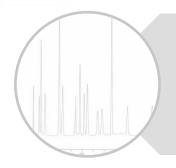
Application	Method	
Analytical analyses that are influenced by TFA ions: - Infrared (IR) spectroscopy - Circular dichroism (CD) spectroscopy	TFA removal and analysis	
Cell culture assays	TFA removal and analysis	
Cosmetics and pharmaceutical applications	TFA removal and analysis	
Cell culture assays sensitive to endotoxin or prone to immune responses	Endotoxin analysis	

Case study: effect of TFA on cell culture

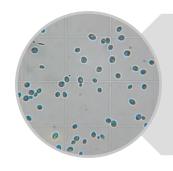

 Even trace amounts of TFA can cause cytotoxicity in cell culture assays

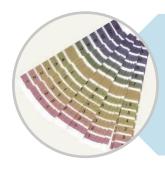
Trifluoroacetate, a contaminant in purified proteins, inhibits proliferation of osteoblasts and chondrocytes

J. Cornish, K. E. Callon, C. Q.-X. Lin, C. L. Xiao, T. B. Mulvey, G. J. S. Cooper, I. R. Reid


American Journal of Physiology - Endocrinology and Metabolism Published 1 November 1999 Vol. 277 no. 5, E779-E783 DOI:

- Peptides containing TFA at concentrations ranging from 10⁻⁹ to 10⁻⁷M were supplemented to osteocyte and bone cultures.
- Viability was assessed by [³H]thymidine incorporation after 24 hours


AccuPep+ service test options


Quantification Tests:

 Do I really know all the possible components in my peptide sample?

Toxicity Tests:

What could make my experiment fail?

Other Tests:

 What else can I do to accelerate my experiments?

Solubility Test

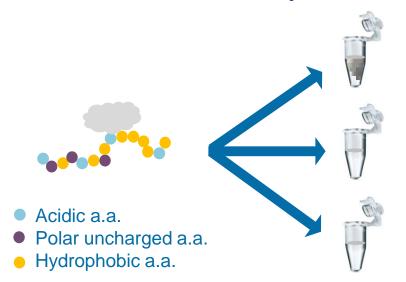
- Hydrophobic peptides
 - Containing > 50% hydrophobic amino acid
 - Length > 5 a.a.
- Hydrophobic :

```
Ala (A), Trp (W), Leu (L), Ile (I), Phe (F), Met (M), Val (V), Pro (P)
```

Basic:

```
Arg (R), His (H), Lys (K)
```

Polar uncharged:

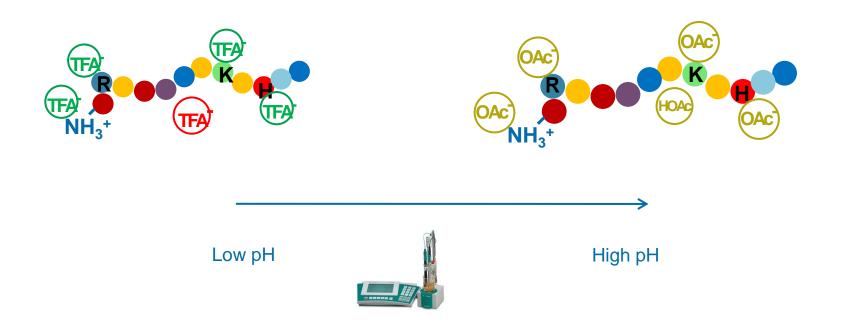

```
Asn (N), Cys (C), Gly (G), Gln (Q), Ser (S), Thr (T), Tyr (Y)
```

Acidic:

Components of the solubility report

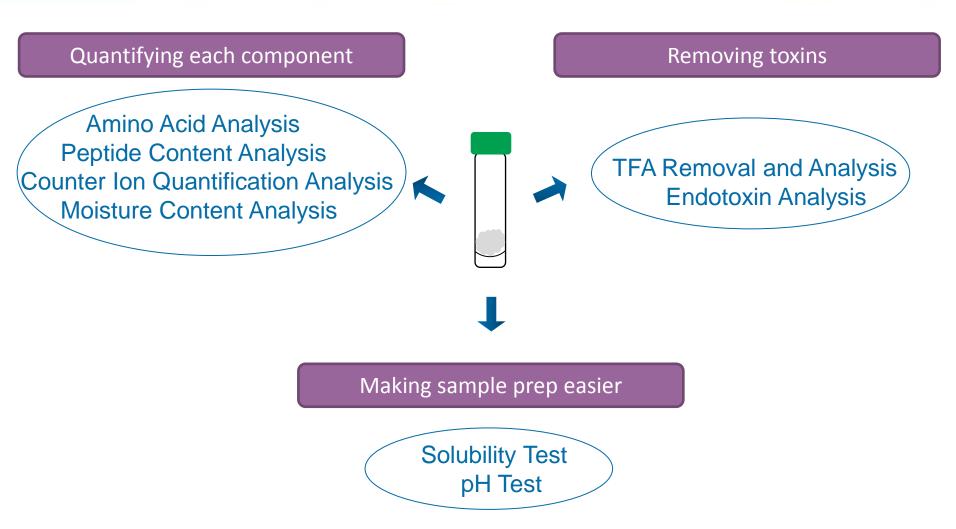
What is included in your solubility report?

Benefits:


Reduces troubleshooting
Saves time and peptide products
Particularly useful for peptide libraries

Solvent	Results (Dissolved or Undissolved)	Gross Peptide Concentration
Ultrapure water	Undissolved	N/A
PBS(pH 7.1 \pm 0.1)	Dissolved	≤ 1mg/ml
DMSO	Dissolved	≤ 10mg/ml
Others*	N/A	N/A

pH Testing



- Why different pH value
 - Free TFA acid may be present
 - Different counter ions may result in various pH values of peptide solutions

Conclusions

How can I request these services?

Click on the quote button

Input your desired peptide sequence, purity, quantity and modification

Check the box to receive a free solubility test Select a TFA Removal option (guaranteed or standard) In the comments section, request any of the optional QC services

To learn more, visit

www.genscript.com/accuprep_quality.html

Peptide services at GenScript

Standard peptide synthesis

- Starting at \$3.2/AA
- Up to 200 AA
- Mg to kg quantity

Peptide Library

- Standard and micro-scale quantity
- Flexible purity options
- Peptide pooling available

Peptoid Synthesis

- Proteolytic resistant peptidomimetics
- Cost-effective, fast turnaround

Cosmetic Peptide Synthesis

- High batch-to-batch reproducibility
- High capacity

Click Peptide Synthesis

- O-acyl bond incorporation technology
- Increased peptide stability

www.genscript.com/peptide-services.html

Thank you for your participation We wish you success with your research

Register for other webinars in the GenScript Webinar Series or download past webinars at http://www.genscript.com/webinars.html

Large scale genome editing for metabolic engineering of *E. coli—Yifan Li, Ph.D.*

November 5, 2015, 9:00 AM or 2:00 PM EST

Optimizing soluble protein expression: codon optimization, RBS design and expression vector design— *Rachel Speer, Ph.D.*

November 11, 2015, 9:00 AM or 2:00 PM EST

Antibody Drug Development: challenges & solutions – *Liusong Yin, Ph.D.*

November 18, 2015, 9:00 AM EST

If you have any other questions, visit www.genscript.com/faq_for_peptide
Or email: Lauren.Lu@genscript.com or laura.geuss@genscript.com