Human Gonadotropin-Releasing Hormone Receptor Cell Line

Technical Manual No.

Version 20080604

	Introduction	
	Cell Line Information	
	Cell Culture Conditions	
IV	Assay Procedure	3
V	Results	3
VI	References	5
VII	Appendix	5

I. Introduction

The gonadotropin-releasing hormone receptor (GnRHR) is a member of the seven-transmembrane G-protein coupled receptor (GPCR) family. It is expressed on the surface of pituitary gonadotrope cells as well as in the lymphocytes, breast, ovaries, and prostate. Following binding of gonadotropin-releasing hormone, the receptor associates with G-proteins that activate a phosphatidylinositol-calcium second messenger system. Activation of the receptor ultimately causes the release of gonadotropic luteinizing hormone (LH) and follicle-stimulating hormone (FSH). Defects in this gene are a cause of hypogonadotropic hypogonadism (HH).

Using HDB's assay development technologies, a cell line and assay protocol was established and pharmacologically validated for GnRHR responsiveness to the parathyroid hormone receptor agonists and antagonists, GnRH, etc. The GnRHR assay is ready for high-throughput screening either as a primary or follow-up (selectivity screening) and can be used to identify agonists and antagonists.

II. Cell Line Information

Description:

The HUMAN GnRHR is amplified by PCR using a high fidelity enzyme and subcloned into the pcDNA3.1(+) mammalian expression vector. The full-length ORF has been confirmed by sequencing. The GnRHR reporter cell line is created by cotransfection of pcDNA3.1(+)/GNRHR and pNFAT- β la in an Hek293 cell line. The transfected cells are stably selected by 700 μ g/ml G418. Single cell clones with high GnRHR inducibility and low β -lactamase background are isolated using ring cloning. The clones with largest dynamic ranges in β -lactamase are chosen for pharmacological and stability studies.

- Cell Line Name: HEK/GnRHR/NFAT/βla
- Date Created: Aug, 2006
- Function: Cell based, functional assay for GnRH receptor
- \triangleright Quantity: 1 vial (2 × 10⁶) frozen cells
- Passage Number Shipped: 2
- ➤ Host Cell: HEK293
- Cell Phenotype: Adherent/epithelial
- > Antibiotics Selection: G418
- Freeze Medium: Growth medium plus 20% FBS and 10% DMSO
- Plasmid: huGNRHR-pCDNA3.1(+)
- Transfection: Full-length human GnRHR cDNA (Genebank Accession Number: NM 000316)
- > Recommended Storage: Liquid nitrogen upon delivery
- Propagation Medium: DMEM, 10% FBS, 700 μg/ml G418

GenScript Corporation Tel: 732-885-9188 Fax: 732-210-0262 www.genscript.com email: info@genscript.com

III. Cell Culture Conditions

Complete Culture Medium:

DMEM: 90% FBS: 10% Supplements: L-glutamine 2.0 mM Amp 100 µg/ml Strep 100 µg/ml

Serum-free DMEM:

Same as above but with no FBS 0.1% BSA

Medium for Stable Line Propagation:

Add 700 µg/ml G418 in complete culture medium.

Freezing Medium:

Complete culture medium plus 20% FBS and 10% DMSO

Thawing Cells:

- 1. Quickly thaw frozen cells in a 37°C water bath, agitating continuously.
- Using a 1 ml pipette, slowly pipet the cells up and down five times and add, drop by drop, to a 15 ml centrifuge tube containing 5 ml of fresh prewarmed complete DMEM medium. Then centrifuge at 1,000 rpm for five minutes.
- 3. Discard the supernatant medium and resuspend the cell pellet in 5 ml of fresh prewarmed complete DMEM medium. Transfer cells to a T25 flask and incubate at 37°C with 5% CO₂ until the cells reach >90% confluence. The recovery rate for frozen cells is usually 90% or above.

Subculturing:

When the cells reach confluence, they need split. This cell line is normally split twice weekly at 1:8 to 1:15 dilutions.

- 1. Carefully aspirate all the media. Gently rinse the cell layer with appropriate amount of 0.2% trypsin-EDTA, and aspirate it off.
- 2. Wait for about 1-3 minutes. Dislodge the cells by gently tapping the sides of flask or dish.
- 3. Resuspend cells with appropriate amount of complete DMEM medium, and split cells as desired.

Changing Medium:

This is normally done every other day.

- 1. Gently aspirate off medium.
- 2. Transfer fresh warm complete DMEM medium (37°C) into a flask (5 ml for T25 and 10 ml for T75).

Freezing Cells:

- 1. Repeat the steps 1-3 of subculturing section.
- 2. Centrifuge down the cells at 1,000 rpm for five minutes.
- Aspirate off the supernatant and resuspend the cells in fresh freezing medium at a density of 2-3 x 10⁶ cells/ml. Add 1 ml cells per cryogenic vial.
- 4. Put the cryogenic vial of cells into cryo freezing container. Then transfer the container to a -80°C environment and leave it there overnight.
- 5. Transfer cryogenic vial into liquid nitrogen (-196°C).

IV. Assay Procedure

CCF-4 Assay of HEK293/GnRHR/NFAT/βla Reporter Cells

- Seed 25,000 cells per well in growth medium (100 μl per well) into 96-well tissue culture treated blackwall, clear-bottom plates (Costar #3603) after trypsinization. Prepare some wells with medium alone (no cells) to use for determining plate background.
- 2. Culture cells in 5% CO₂ at 37°C. Allow cells to reach ≈90% confluence.
- 3. 12-24 hours before the assay, replace Growth Medium with 100 μ I/well serum-free DMEM. Be careful not to disturb the cells.
- 4. Prepare ligand solution in serum-free DMEM (10X).
- 5. Add 10 μl of 10X ligand solution to wells for stimulation and 10 μl of serum-free DMEM per well for non-stimulated control.
- 6. Incubate cells in 5% CO₂ at 37°C for 5-6 hours.
- 7. Load cells with 2 µM CCF4/AM as described in CCF4 Loading Protocol.
- 8. Incubate the plate at room temperature for 60-120 minutes without shaking.
- Read with Analyst HT plate reader or observe under fluorescence microscope for 60-200 minutes after CCF-4 loading.

CCF-4 Loading Protocol

- 1. Solution A: Dissolve 5 mg CCF-4/AM with 4.6 ml DMSO to a stock concentration at 1 mM. Aliquot and stored at -80°C, protected from light.
- 2. Solution B: 100 mg/ml Pluronic -F127 surfactant in DMSO and 0.1% acetic acid
- 3. Solution C: Red Dye solution
- 4. 6X substrate loading solution:
 - 1) Add 6 µl of Solution A to 60 µl of Solution B and mix well
 - 2) Add 934 µl of Solution C to the combined Solutions A and B and mix well.
- Add 6X Substrate Loading Solution to cells to 1X final concentration (e.g., add 20 μl of 6XCCF4-AM Substrate Loading Solution to 100 μl of cells in buffer).
- 6. Add the same volume of 6X Substrate Loading Solution to the cell-free background control wells (containing assay medium or buffer) to 1X final concentration.
- 7. Cover the plate to protect it from light and evaporation.

V. Results

GnRHR Inducibility of HEK/GnRHR/NFAT/βla Cell Line

	Un-stimulated Control	Stimulated (GnRH)
Ratio 460/530	0.14	3.59
Fold induction	1	25.7

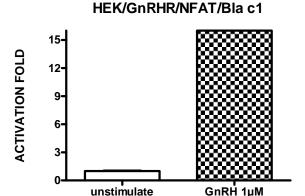
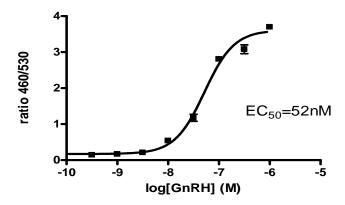



Fig. 1. Bargraph of HEK/GnRHR/NFAT/ β Ia cell line stimulated by GnRH at 1 μ M. Assay was done according to the procedures described above.

GnRH Dose Response of HEK/GnRHR/NFAT/βla Cell Line

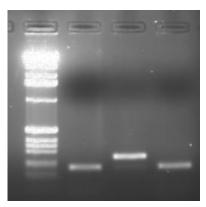


Fig. 2. Dose response of β-lactamase activity as monitored with Analyst HT plate reader upon treatment with ligand. Assay was done according to procedure described above. Data represent means \pm SEM for triplicate samples. EC50 value for GnRH dose response was determined using GraphPad Prism 4 software.

HEK/GnRHR/NFAT/βla Cell Line Mycoplasma Detection

M GnRHR +

Fig. 3. Mycoplasma detection results with HEK/GnRHR/NFAT/βla cell line. PCR products run on 2% agarose gel.

Lane "GnRHR" referred to HEK/GnRHR/NFAT/βla cell line

Lane "+" referred to Mycoplasma positive control

Lane "-" referred to Mycoplasma negative control

Invitrogen 1kb ladder (Cat.No. 15615-016) was used as marker.

The result demonstrates that cell line is Mycoplasma free.

VI. References

- Chi Keung Cheng et al. Molecular Biology of Gonadotropin-Releasing Hormone (GnRH)-I, GnRH-II, and Their Receptors in Humans. Endocrine Reviews 26: 283–306, 2005
- 2. JIMMY D. NEILL *et al.* Minireview: GnRH and GnRH Receptor Genes in the Human Genome. Endocrinology 143: 737–743, 2002
- Karen L Herbst, Gonadotropin-releasing hormone antagonists. Current Opinion in Pharmacology 3:660–666, 2003

VII. Appendix

Reagents & Consumables:

- 1. DMEM: Dulbecco's Modified Eagle Medium powder, high glucose (Gibco BRL, Cat #12100-046)
- 2. FBS: Fetal Bovine Serum (Hyclone, Cat #CH30160.03)
- 3. L-Glutamine: 200 mM (Gibco BRL, Cat # 25030-081)
- 4. Ampicillin: 50 mg/ml (Sigma A-9518)
- 5. Streptomycin Sulfate: 50 mg/ml (Gibco BRL, Cat # 11860-038)
- 6. Hygromycin B in PBS, 50 mg/ml (Invitrogen, Cat #10687-010)
- 7. Trypsin: 1:250 rom Bovine Pancreas (Gibco BRL, Cat # 27250016)
- 8. DMSO: dimethyl sulphoxide, for molecular biology (Sigma, Cat #D8418)
- 9. Hepes: Sigma Cat #H-3375
- 10. CCF4: (Invitrogen, Cat #K1096)
- 11. GnRH: synthesized by HD Biosciences
- 12. Venor@GeM Mycoplasma Detection kit: Minerva Biolabs Cat #11-1050
- 13. T25 flask: 25cm² cell culture flask (Corning Cat #430639)

Human Gonadotropin-Releasing Hormone Receptor Cell Line

- 14.6 cm dish: (Orange, Cat # 2050200)
- 15.6-well plate: (Corning Cat #3516)
- 16. Cryogenic Vial: (Corning Cat #430289)
- 17. 96 Well Plate: Costar, Cat# 3603, Blackwall/clear bottom, Polystyrene, sterilized.

Media and Solutions:

1. PBS (for preparation of 500 ml)

1)	KCI:	0.1 g
2)	KH ₂ PO ₄ :	0.1 g
3)	NaCl:	4.0 g
4)	Na ₂ HPO ₄ .12H ₂ O:	1.4425 g
,		

Dissolve the above components in double-distilled water (ddH₂O) and adjust pH to 7.4 with 0.1 N NaOH. Add ddH₂O to the final volume of 500 ml. Autoclave and store at 4°C.

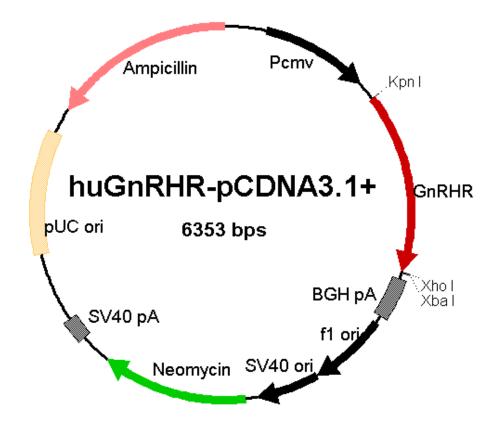
2. Trypsin-EDTA (for preparation of 100 ml)

1)	Trypsin:	0.25 g
2)	2%EDTA:	2 ml
3)	PBS:	98 ml

Dissolve trypsin in 2%EDTA and PBS completely; sterilize the solution by passing through a 0.20 µm membrane filter; store at 4°C.

- 3. Culture medium (for preparation of 1 L)
 - 1) Measure out 950 ml distilled water to dissolve the media components with gentle stirring until the solution becomes clear.
 - Add NaHCO₃ 3.7 g for high glucose DMEM
 - 3) Adjust pH of medium to 0.2-0.3 below the desired final working pH (using 1 N NaOH or 1 N HCL is recommended). Add slowly with stirring.
 - Dilute to 1 liter with ddH₂O. 4)
 - Sterilize the medium immediately using the method of membrane filtration. Store at 4°C
- 4. Ampicillin/Streptomycin 50 mg/ml

Dissolve 1 g Ampicillin or Streptomycin in 20 ml ddH₂O and sterilize the solution by membrane filtration using 0.20 µm filter. Aliquot and store at 4°C for short-term conservation and -20°C for long term conservation.


Map of huGnRHR-pCDNA3.1 (+)

Insert gene: gonadotropin-releasing hormone receptor (GnRHR)

Length of insert: 987 bp Sequence referance: Gene Bank NM_000406 Vector: pCDNA3.1+ (Invitrogen) Insert site: Kpn I (5') and Xhol (3')

Plasmid Map:

Comments for huGnRHR-pCDNA3.1+ 6353 nucleotides

CMV promoter: bases 232~819

T7 promoter/priming site: bases 863~882

GnRHR gene: bases 923 ~1909

pCDNA3.1/BGH reverse priming site: bases 1947~1964 BGH polyadenylation sequence: bases 1953~2177

f1 origin: bases 2223~2651

SV40 early promoter and origin: bases 2656~2999 Neomycin resistance gene (ORF): bases 3061~3855 SV40 early polyadenylation signal: bases 4029~4159 pUC origin: bases (complementary strand) 4542~5212

Ampicillin resistance gene (bla): bases 5357~6353(complementary strand)

GenScript Corporation 120 Centennial Ave., Piscataway, NJ 08854 Tel: 732-885-9188, 732-885-9688 Fax: 732-210-0262, 732-885-5878

Email: info@genscript.com
Web: http://www.genscript.com

For Research Use Only.