×

QTRT1 cDNA ORF clone, Homo sapiens(Human)

Gene Symbol QTRT1
Entrez Gene ID 81890
Full Name queuine tRNA-ribosyltransferase catalytic subunit 1
Synonyms FP3235,TGT,TGUT
General protein information
Preferred Names

queuine tRNA-ribosyltransferase catalytic subunit 1

Names

queuine tRNA-ribosyltransferase catalytic subunit 1
TGT, 43-KD subunit
TGT, catalytic subunit
guanine insertion enzyme
queuine tRNA-ribosyltransferase 1
tRNA-guanine transglycosylase

Gene Type protein-coding
Organism Homo sapiens(Human)
Genome

19

19p13.2

Summary This gene encodes the catalytic subunit of tRNA-guanine transglycosylase. tRNA-guanine transglycosylase is a heterodimeric enzyme complex that plays a critical role in tRNA modification by synthesizing the 7-deazaguanosine queuosine, which is found in tRNAs that code for asparagine, aspartic acid, histidine and tyrosine. A pseudogene of this gene is located on the long arm of chromosome X. [provided by RefSeq, Feb 2012].
Disorder MIM:

609615


mRNA and Protein(s)

mRNA Protein Name
NM_031209.2 NP_112486.1 queuine tRNA-ribosyltransferase catalytic subunit 1



Bos taurus (cattle) QTRT1 NP_001193621.1
Drosophila melanogaster (fruit fly) Tgt NP_608585.1
Magnaporthe oryzae (rice blast fungus) MGG_04110 XP_003719721.1
Neurospora crassa NCU07015 XP_001728151.1
Oryza sativa (rice) Os09g0469900 NP_001063434.1
Xenopus tropicalis (tropical clawed frog) qtrt1 NP_989090.1
Pan troglodytes (chimpanzee) QTRT1 XP_512381.1
Mus musculus (house mouse) Qtrt1 NP_068688.2
Rattus norvegicus (Norway rat) Qtrt1 NP_071586.2
Homo sapiens (human) QTRT1 NP_112486.1
Danio rerio (zebrafish) qtrt1 NP_957304.1
Caenorhabditis elegans (roundworm) tgt-1 NP_502268.1
Anopheles gambiae (African malaria mosquito) AgaP_AGAP003622 XP_313382.3
Canis lupus familiaris (dog) QTRT1 XP_854015.1
Schizosaccharomyces pombe (fission yeast) SPAC1687.19c NP_593138.1


Related articles in PubMed

Investigation of specificity determinants in bacterial tRNA-guanine transglycosylase reveals queuine, the substrate of its eucaryotic counterpart, as inhibitor.
Biela I, Tidten-Luksch N, Immekus F, Glinca S, Nguyen TX, Gerber HD, Heine A, Klebe G, Reuter K
PloS one8(5)e64240(2013)

Differential heterocyclic substrate recognition by, and pteridine inhibition of E. coli and human tRNA-guanine transglycosylases.
Eric Thomas C, Chen YC, Garcia GA
Biochemical and biophysical research communications410(1)34-9(2011 Jun)

Evolution of eukaryal tRNA-guanine transglycosylase: insight gained from the heterocyclic substrate recognition by the wild-type and mutant human and Escherichia coli tRNA-guanine transglycosylases.
Chen YC, Brooks AF, Goodenough-Lashua DM, Kittendorf JD, Showalter HD, Garcia GA
Nucleic acids research39(7)2834-44(2011 Apr)

Characterization of the human tRNA-guanine transglycosylase: confirmation of the heterodimeric subunit structure.
Chen YC, Kelly VP, Stachura SV, Garcia GA
RNA (New York, N.Y.)16(5)958-68(2010 May)

Characterization of cDNA encoding the human tRNA-guanine transglycosylase (TGT) catalytic subunit.
Deshpande KL, Katze JR
Gene265(1-2)205-12(2001 Mar)

GeneRIFs: Gene References Into Functions What's a GeneRIF?

Homology models of C elegans Tgt and human Tgt suggest that the replacement of Cys158 and Val233 in bacterial Tgt (Zymomonas mobilis) by valine and accordingly glycine in eucaryotic Tgt largely accounts for the different substrate specificities.
Title: Investigation of specificity determinants in bacterial tRNA-guanine transglycosylase reveals queuine, the substrate of its eucaryotic counterpart, as inhibitor.

the inhibition of the human TGT by biopterin, consistent with earlier reports on other eukaryal TGTs, and supportive of the concept that pteridines may regulate eukaryal TGT activity in vivo.
Title: Differential heterocyclic substrate recognition by, and pteridine inhibition of E. coli and human tRNA-guanine transglycosylases.

phylogenetic and kinetic analyses support the conclusion that all tRNA-guanine transglycosylases have divergently evolved to specifically recognize their cognate heterocyclic substrates.
Title: Evolution of eukaryal tRNA-guanine transglycosylase: insight gained from the heterocyclic substrate recognition by the wild-type and mutant human and Escherichia coli tRNA-guanine transglycosylases.

TGT is composed of a catalytic subunit, QTRT1, and QTRTD1, not USP14. QTRTD1 has been implicated as the salvage enzyme that generates free queuine from QMP.
Title: Characterization of the human tRNA-guanine transglycosylase: confirmation of the heterodimeric subunit structure.

The following QTRT1 gene cDNA ORF clone sequences were retrieved from the NCBI Reference Sequence Database (RefSeq). These sequences represent the protein coding region of the QTRT1 cDNA ORF which is encoded by the open reading frame (ORF) sequence. ORF sequences can be delivered in our standard vector, pcDNA3.1+/C-(K)DYK or the vector of your choice as an expression/transfection-ready ORF clone. Not the clone you want? Click here to find your clone.

Online Only Promotion

Up to 50% OFF! Starting
from $49/clone

***CloneID RefSeq Accession Definition **Vector *Turnaround time Price (USD) Select
OHu31882 NM_031209.2
Latest version!
Homo sapiens queuine tRNA-ribosyltransferase catalytic subunit 1 (QTRT1), mRNA. pcDNA3.1+/C-(K)DYK or customized vector 7-9 $237.30
$339.00

ORF Online Only Promotion

Next-day Shipping ORF Clones ( in default vector with tag)
1 Clone 30% OFF
2-4 Clone 40% OFF
5 or more Clone 50% OFF
All Other ORF Clones
30% OFF

*Business Day

** You may select a custom vector to replace pcDNA3.1+/C-(K)DYK after clone is added to cart.

** GenScript guarantees 100% sequence accuracy of all synthetic DNA constructs we deliver, but we do not guarantee protein expression in your experimental system. Protein expression is influenced by many factors that may vary between experiments or laboratories. In addition, please pay attention to the signal peptide, propeptide and transit peptide in target ORF, which may affect the choice of vector (N/C terminal tag vector).

***One clone ID might be correlated to multiple accession numbers, which share the same CDS sequence.


CloneID OHu31882
Clone ID Related Accession (Same CDS sequence) NM_031209.2
Accession Version NM_031209.2 Latest version! Documents for ORF clone product in dufault vector
Sequence Information ORF Nucleotide Sequence (Length: 1212bp)
Protein sequence
SNP
Vector pcDNA3.1+/C-(K)DYK or customized vector User Manual
Clone information Clone Map MSDS
Tag on pcDNA3.1+/C-(K)DYK C terminal DYKDDDDK tags
ORF Insert Method CloneEZ® Seamless cloning technology
Insert Structure linear
Update Date 2017-05-05
Organism Homo sapiens(Human)
Product queuine tRNA-ribosyltransferase catalytic subunit 1
Comment REVIEWED REFSEQ: This record has been curated by NCBI staff. The reference sequence was derived from CT003728.1, AF302783.1 and AF370379.1. On Jan 23, 2009 this sequence version replaced NM_031209.1. ##Evidence-Data-START## Transcript exon combination :: SRR1163658.159676.1, SRR1163655.415021.1 [ECO:0000332] RNAseq introns :: single sample supports all introns SAMEA1965299, SAMEA1966682 [ECO:0000348] ##Evidence-Data-END## COMPLETENESS: complete on the 3' end.

1
61
121
181
241
301
361
421
481
541
601
661
721
781
841
901
961
1021
1081
1141
1201
ATGGCGGGAG CAGCTACCCA GGCTTCCCTG GAGTCGGCCC CACGGATCAT GCGGCTGGTG 
GCCGAATGCA GCCGCTCCAG GGCCCGGGCA GGCGAGCTGT GGCTGCCGCA TGGGACAGTG
GCCACTCCTG TGTTCATGCC AGTGGGCACG CAGGCCACCA TGAAGGGCAT CACGACCGAA
CAGCTGGACG CTCTGGGTTG CCGCATCTGC CTGGGCAATA CCTACCATCT GGGTCTAAGG
CCGGGACCCG AGCTGATCCA GAAAGCCAAC GGTCTCCACG GCTTCATGAA TTGGCCTCAT
AATCTGCTAA CGGACAGCGG CGGTTTCCAG ATGGTGTCGC TGGTGTCTCT GTCCGAGGTG
ACGGAGGAGG GCGTCCGCTT CCGCTCCCCC TACGACGGCA ATGAGACCCT GCTGAGCCCG
GAGAAATCCG TGCAGATCCA GAATGCGCTG GGCTCGGACA TCATCATGCA GCTGGACGAC
GTGGTTAGCA GTACTGTGAC TGGGCCACGT GTGGAGGAGG CCATGTACAG GTCAATCCGC
TGGCTGGACC GGTGCATTGC AGCCCATCAG CGGCCGGACA AGCAGAACCT CTTCGCCATT
ATCCAGGGTG GGCTGGACGC AGATCTCCGG GCCACCTGCC TTGAAGAGAT GACCAAGCGA
GACGTGCCTG GCTTCGCCAT CGGGGGCCTG AGCGGGGGTG AGAGCAAGTC GCAGTTCTGG
CGGATGGTGG CGCTGAGCAC CTCTCGGCTG CCGAAGGACA AGCCCCGATA TCTGATGGGG
GTTGGCTATG CCACTGATCT GGTAGTCTGC GTGGCTCTTG GATGTGACAT GTTCGACTGC
GTCTTCCCCA CACGGACAGC GCGCTTTGGC TCTGCCCTGG TGCCCACTGG GAACCTGCAG
TTGAGGAAGA AGGTGTTTGA GAAGGACTTC GGCCCCATAG ACCCGGAGTG CACCTGCCCC
ACGTGCCAAA AGCACAGCCG CGCCTTCCTG CACGCACTGC TGCACAGTGA CAACACGGCC
GCGCTGCACC ACCTCACGGT CCACAACATC GCCTACCAGC TGCAGCTCAT GAGCGCCGTC
CGCACCAGCA TCGTGGAGAA GCGCTTCCCG GACTTCGTGC GGGACTTCAT GGGCGCCATG
TACGGGGATC CCACCCTCTG TCCCACCTGG GCCACTGACG CTCTGGCCTC TGTGGGAATC
ACACTGGGCT GA

The stop codons will be deleted if pcDNA3.1+/C-(K)DYK vector is selected.

RefSeq NP_112486.1
CDS26..1237
Misc Feature(1)29..31
Misc Feature(2)92..1177
Misc Feature(3)101..1153
Misc Feature(4)338..352
Misc Feature(5)440..442
Misc Feature(6)803..823
Misc Feature(7)875..889
Exon (1)1..268
Exon (2)269..337
Exon (3)338..476
Exon (4)477..555
Exon (5)556..671
Exon (6)672..810
Exon (7)811..886
Exon (8)887..996
Exon (9)997..1084
Exon (10)1085..1334
Translation

Target ORF information:

RefSeq Version NM_031209.2
Organism Homo sapiens(Human)
Definition Homo sapiens queuine tRNA-ribosyltransferase catalytic subunit 1 (QTRT1), mRNA.

Target ORF information:

Epitope DYKDDDDK
Bacterial selection AMPR
Mammalian selection NeoR
Vector pcDNA3.1+/C-(K)DYK
NM_031209.2

ORF Insert Sequence:

1
61
121
181
241
301
361
421
481
541
601
661
721
781
841
901
961
1021
1081
1141
1201
ATGGCGGGAG CAGCTACCCA GGCTTCCCTG GAGTCGGCCC CACGGATCAT GCGGCTGGTG 
GCCGAATGCA GCCGCTCCAG GGCCCGGGCA GGCGAGCTGT GGCTGCCGCA TGGGACAGTG
GCCACTCCTG TGTTCATGCC AGTGGGCACG CAGGCCACCA TGAAGGGCAT CACGACCGAA
CAGCTGGACG CTCTGGGTTG CCGCATCTGC CTGGGCAATA CCTACCATCT GGGTCTAAGG
CCGGGACCCG AGCTGATCCA GAAAGCCAAC GGTCTCCACG GCTTCATGAA TTGGCCTCAT
AATCTGCTAA CGGACAGCGG CGGTTTCCAG ATGGTGTCGC TGGTGTCTCT GTCCGAGGTG
ACGGAGGAGG GCGTCCGCTT CCGCTCCCCC TACGACGGCA ATGAGACCCT GCTGAGCCCG
GAGAAATCCG TGCAGATCCA GAATGCGCTG GGCTCGGACA TCATCATGCA GCTGGACGAC
GTGGTTAGCA GTACTGTGAC TGGGCCACGT GTGGAGGAGG CCATGTACAG GTCAATCCGC
TGGCTGGACC GGTGCATTGC AGCCCATCAG CGGCCGGACA AGCAGAACCT CTTCGCCATT
ATCCAGGGTG GGCTGGACGC AGATCTCCGG GCCACCTGCC TTGAAGAGAT GACCAAGCGA
GACGTGCCTG GCTTCGCCAT CGGGGGCCTG AGCGGGGGTG AGAGCAAGTC GCAGTTCTGG
CGGATGGTGG CGCTGAGCAC CTCTCGGCTG CCGAAGGACA AGCCCCGATA TCTGATGGGG
GTTGGCTATG CCACTGATCT GGTAGTCTGC GTGGCTCTTG GATGTGACAT GTTCGACTGC
GTCTTCCCCA CACGGACAGC GCGCTTTGGC TCTGCCCTGG TGCCCACTGG GAACCTGCAG
TTGAGGAAGA AGGTGTTTGA GAAGGACTTC GGCCCCATAG ACCCGGAGTG CACCTGCCCC
ACGTGCCAAA AGCACAGCCG CGCCTTCCTG CACGCACTGC TGCACAGTGA CAACACGGCC
GCGCTGCACC ACCTCACGGT CCACAACATC GCCTACCAGC TGCAGCTCAT GAGCGCCGTC
CGCACCAGCA TCGTGGAGAA GCGCTTCCCG GACTTCGTGC GGGACTTCAT GGGCGCCATG
TACGGGGATC CCACCCTCTG TCCCACCTGG GCCACTGACG CTCTGGCCTC TGTGGGAATC
ACACTGGGCT GA

The stop codons will be deleted if pcDNA3.1+/C-(K)DYK vector is selected.

book

Investigation of specificity determinants in bacterial tRNA-guanine transglycosylase reveals queuine, the substrate of its eucaryotic counterpart, as inhibitor.
PloS one8(5)e64240(2013)
Biela I,Tidten-Luksch N,Immekus F,Glinca S,Nguyen TX,Gerber HD,Heine A,Klebe G,Reuter K


book

Differential heterocyclic substrate recognition by, and pteridine inhibition of E. coli and human tRNA-guanine transglycosylases.
Biochemical and biophysical research communications410(1)34-9(2011 Jun)
Eric Thomas C,Chen YC,Garcia GA


book

Evolution of eukaryal tRNA-guanine transglycosylase: insight gained from the heterocyclic substrate recognition by the wild-type and mutant human and Escherichia coli tRNA-guanine transglycosylases.
Nucleic acids research39(7)2834-44(2011 Apr)
Chen YC,Brooks AF,Goodenough-Lashua DM,Kittendorf JD,Showalter HD,Garcia GA


book

Characterization of the human tRNA-guanine transglycosylase: confirmation of the heterodimeric subunit structure.
RNA (New York, N.Y.)16(5)958-68(2010 May)
Chen YC,Kelly VP,Stachura SV,Garcia GA


book

Characterization of cDNA encoding the human tRNA-guanine transglycosylase (TGT) catalytic subunit.
Gene265(1-2)205-12(2001 Mar)
Deshpande KL,Katze JR


 
*
*
*
*